Barros Beatriz Jacinto, Cunha João P S
INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal.
Faculty of Engineering, University of Porto, Porto, Portugal.
Front Neurosci. 2024 May 3;18:1382341. doi: 10.3389/fnins.2024.1382341. eCollection 2024.
The human brain, with its vast network of billions of neurons and trillions of synapses (connections) between diverse cell types, remains one of the greatest mysteries in science and medicine. Despite extensive research, an understanding of the underlying mechanisms that drive normal behaviors and response to disease states is still limited. Advancement in the Neuroscience field and development of therapeutics for related pathologies requires innovative technologies that can provide a dynamic and systematic understanding of the interactions between neurons and neural circuits. In this work, we provide an up-to-date overview of the evolution of neurophotonic approaches in the last 10 years through a multi-source, literature analysis. From an initial corpus of 243 papers retrieved from Scopus, PubMed and WoS databases, we have followed the PRISMA approach to select 56 papers in the area. Following a full-text evaluation of these 56 scientific articles, six main areas of applied research were identified and discussed: (1) Advanced optogenetics, (2) Multimodal neural interfaces, (3) Innovative therapeutics, (4) Imaging devices and probes, (5) Remote operations, and (6) Microfluidic platforms. For each area, the main technologies selected are discussed according to the photonic principles applied, the neuroscience application evaluated and the more indicative results of efficiency and scientific potential. This detailed analysis is followed by an outlook of the main challenges tackled over the last 10 years in the Neurophotonics field, as well as the main technological advances regarding specificity, light delivery, multimodality, imaging, materials and system designs. We conclude with a discussion of considerable challenges for future innovation and translation in Neurophotonics, from light delivery within the brain to physical constraints and data management strategies.
人类大脑拥有由数十亿个神经元和数万亿个不同细胞类型之间的突触(连接)组成的庞大网络,仍然是科学和医学中最大的谜团之一。尽管进行了广泛的研究,但对驱动正常行为和对疾病状态反应的潜在机制的理解仍然有限。神经科学领域的进步以及相关病理学治疗方法的开发需要创新技术,这些技术能够提供对神经元和神经回路之间相互作用的动态和系统理解。在这项工作中,我们通过多源文献分析,对过去10年神经光子学方法的发展进行了最新概述。从Scopus、PubMed和WoS数据库检索到的243篇论文的初始语料库中,我们遵循PRISMA方法在该领域选择了56篇论文。在对这56篇科学文章进行全文评估后,确定并讨论了六个主要应用研究领域:(1)先进光遗传学,(2)多模态神经接口,(3)创新疗法,(4)成像设备和探针,(5)远程操作,以及(6)微流控平台。对于每个领域,根据应用的光子原理、评估的神经科学应用以及效率和科学潜力的更具指示性的结果,讨论了所选的主要技术。在这一详细分析之后,展望了过去10年神经光子学领域面临的主要挑战,以及在特异性、光传输、多模态、成像、材料和系统设计方面的主要技术进展。我们最后讨论了神经光子学未来创新和转化面临的重大挑战,从大脑内的光传输到物理限制和数据管理策略。