Suppr超能文献

基于忆阻器网络的稀疏编码

Sparse coding with memristor networks.

作者信息

Sheridan Patrick M, Cai Fuxi, Du Chao, Ma Wen, Zhang Zhengya, Lu Wei D

机构信息

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Nat Nanotechnol. 2017 Aug;12(8):784-789. doi: 10.1038/nnano.2017.83. Epub 2017 May 22.

Abstract

Sparse representation of information provides a powerful means to perform feature extraction on high-dimensional data and is of broad interest for applications in signal processing, computer vision, object recognition and neurobiology. Sparse coding is also believed to be a key mechanism by which biological neural systems can efficiently process a large amount of complex sensory data while consuming very little power. Here, we report the experimental implementation of sparse coding algorithms in a bio-inspired approach using a 32 × 32 crossbar array of analog memristors. This network enables efficient implementation of pattern matching and lateral neuron inhibition and allows input data to be sparsely encoded using neuron activities and stored dictionary elements. Different dictionary sets can be trained and stored in the same system, depending on the nature of the input signals. Using the sparse coding algorithm, we also perform natural image processing based on a learned dictionary.

摘要

信息的稀疏表示为对高维数据进行特征提取提供了一种强大的方法,并且在信号处理、计算机视觉、目标识别和神经生物学等应用中具有广泛的研究兴趣。稀疏编码也被认为是生物神经系统能够高效处理大量复杂感官数据同时消耗极少能量的关键机制。在此,我们报告了一种受生物启发的方法中稀疏编码算法的实验实现,该方法使用了一个32×32的模拟忆阻器交叉阵列。这个网络能够高效地实现模式匹配和侧向神经元抑制,并允许使用神经元活动和存储的字典元素对输入数据进行稀疏编码。根据输入信号的性质,可以在同一系统中训练和存储不同的字典集。使用稀疏编码算法,我们还基于学习到的字典进行自然图像处理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验