Suppr超能文献

GPDBN:用于乳腺癌预后预测的整合基因组数据和病理图像的深度双线性网络。

GPDBN: deep bilinear network integrating both genomic data and pathological images for breast cancer prognosis prediction.

机构信息

School of Information Science and Technology, University of Science and Technology of China, Hefei AH230027, China.

Centers for Biomedical Engineering, University of Science and Technology of China, Hefei AH230027, China.

出版信息

Bioinformatics. 2021 Sep 29;37(18):2963-2970. doi: 10.1093/bioinformatics/btab185.

Abstract

MOTIVATION

Breast cancer is a very heterogeneous disease and there is an urgent need to design computational methods that can accurately predict the prognosis of breast cancer for appropriate therapeutic regime. Recently, deep learning-based methods have achieved great success in prognosis prediction, but many of them directly combine features from different modalities that may ignore the complex inter-modality relations. In addition, existing deep learning-based methods do not take intra-modality relations into consideration that are also beneficial to prognosis prediction. Therefore, it is of great importance to develop a deep learning-based method that can take advantage of the complementary information between intra-modality and inter-modality by integrating data from different modalities for more accurate prognosis prediction of breast cancer.

RESULTS

We present a novel unified framework named genomic and pathological deep bilinear network (GPDBN) for prognosis prediction of breast cancer by effectively integrating both genomic data and pathological images. In GPDBN, an inter-modality bilinear feature encoding module is proposed to model complex inter-modality relations for fully exploiting intrinsic relationship of the features across different modalities. Meanwhile, intra-modality relations that are also beneficial to prognosis prediction, are captured by two intra-modality bilinear feature encoding modules. Moreover, to take advantage of the complementary information between inter-modality and intra-modality relations, GPDBN further combines the inter- and intra-modality bilinear features by using a multi-layer deep neural network for final prognosis prediction. Comprehensive experiment results demonstrate that the proposed GPDBN significantly improves the performance of breast cancer prognosis prediction and compares favorably with existing methods.

AVAILABILITYAND IMPLEMENTATION

GPDBN is freely available at https://github.com/isfj/GPDBN.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

乳腺癌是一种非常异质的疾病,因此迫切需要设计能够准确预测乳腺癌预后的计算方法,以便选择合适的治疗方案。最近,基于深度学习的方法在预后预测方面取得了巨大成功,但它们中的许多方法直接结合了来自不同模态的特征,这可能忽略了复杂的模态间关系。此外,现有的基于深度学习的方法没有考虑到模态内关系,这些关系也有利于预后预测。因此,开发一种基于深度学习的方法,通过整合来自不同模态的数据来利用模态内和模态间的互补信息,对于更准确地预测乳腺癌的预后具有重要意义。

结果

我们提出了一种名为基因组和病理深度学习双线性网络(GPDBN)的新的统一框架,用于乳腺癌的预后预测,通过有效整合基因组数据和病理图像。在 GPDBN 中,提出了一种跨模态双线性特征编码模块,用于对复杂的跨模态关系进行建模,从而充分利用不同模态特征之间的内在关系。同时,通过两个模态内双线性特征编码模块捕获对预后预测也有益的模态内关系。此外,为了利用跨模态和模态内关系之间的互补信息,GPDBN 进一步通过使用多层深度神经网络将跨模态和模态内双线性特征结合起来,用于最终的预后预测。综合实验结果表明,所提出的 GPDBN 显著提高了乳腺癌预后预测的性能,并优于现有方法。

可用性和实现

GPDBN 可在 https://github.com/isfj/GPDBN 上免费获得。

补充信息

补充数据可在 Bioinformatics 在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1324/8479662/b06d22a2ab0a/btab185f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验