Suppr超能文献

用于认知行为分析的机器学习:数据集、方法、范式及研究方向。

Machine learning for cognitive behavioral analysis: datasets, methods, paradigms, and research directions.

作者信息

Bhatt Priya, Sethi Amanrose, Tasgaonkar Vaibhav, Shroff Jugal, Pendharkar Isha, Desai Aditya, Sinha Pratyush, Deshpande Aditya, Joshi Gargi, Rahate Anil, Jain Priyanka, Walambe Rahee, Kotecha Ketan, Jain N K

机构信息

Symbiosis Institute of Technology, Symbiosis International Deemed University, Pune, India.

Centre for Development of Advanced Computing (C-DAC), Delhi, India.

出版信息

Brain Inform. 2023 Jul 31;10(1):18. doi: 10.1186/s40708-023-00196-6.

Abstract

Human behaviour reflects cognitive abilities. Human cognition is fundamentally linked to the different experiences or characteristics of consciousness/emotions, such as joy, grief, anger, etc., which assists in effective communication with others. Detection and differentiation between thoughts, feelings, and behaviours are paramount in learning to control our emotions and respond more effectively in stressful circumstances. The ability to perceive, analyse, process, interpret, remember, and retrieve information while making judgments to respond correctly is referred to as Cognitive Behavior. After making a significant mark in emotion analysis, deception detection is one of the key areas to connect human behaviour, mainly in the forensic domain. Detection of lies, deception, malicious intent, abnormal behaviour, emotions, stress, etc., have significant roles in advanced stages of behavioral science. Artificial Intelligence and Machine learning (AI/ML) has helped a great deal in pattern recognition, data extraction and analysis, and interpretations. The goal of using AI and ML in behavioral sciences is to infer human behaviour, mainly for mental health or forensic investigations. The presented work provides an extensive review of the research on cognitive behaviour analysis. A parametric study is presented based on different physical characteristics, emotional behaviours, data collection sensing mechanisms, unimodal and multimodal datasets, modelling AI/ML methods, challenges, and future research directions.

摘要

人类行为反映认知能力。人类认知从根本上与意识/情感的不同体验或特征相联系,如喜悦、悲伤、愤怒等,这有助于与他人进行有效沟通。在学习控制情绪并在压力情境中更有效地做出反应时,察觉和区分思想、情感及行为至关重要。在做出判断以正确回应的同时,感知、分析、处理、解释、记忆和检索信息的能力被称为认知行为。在情感分析取得显著进展之后,欺骗检测是连接人类行为的关键领域之一,主要应用于法医学领域。检测谎言、欺骗、恶意意图、异常行为、情绪、压力等,在行为科学的高级阶段具有重要作用。人工智能和机器学习(AI/ML)在模式识别、数据提取与分析以及解释方面发挥了很大作用。在行为科学中使用AI和ML的目标是推断人类行为,主要用于心理健康或法医学调查。本文献对认知行为分析的研究进行了广泛综述。基于不同的身体特征、情感行为、数据收集传感机制、单模态和多模态数据集、AI/ML建模方法、挑战以及未来研究方向进行了参数研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a676/10390406/77f45e90b5db/40708_2023_196_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验