Suppr超能文献

一个针对包含精神障碍个体的人群的端到端人类异常行为识别框架。

An End-to-End Human Abnormal Behavior Recognition Framework for Crowds With Mentally Disordered Individuals.

作者信息

Hao Yixue, Tang Zaiyang, Alzahrani Bander, Alotaibi Reem, Alharthi Reem, Zhao Miaomiao, Mahmood Arif

出版信息

IEEE J Biomed Health Inform. 2022 Aug;26(8):3618-3625. doi: 10.1109/JBHI.2021.3122463. Epub 2022 Aug 11.

Abstract

Abnormal or violent behavior by people with mental disorders is common. When individuals with mental disorders exhibit abnormal behavior in public places, they may cause physical and mental harm to others as well as to themselves. Thus, it is necessary to monitor their behavior using visual surveillance systems. However, it is challenging to automatically detect human abnormal behavior (especially for individuals with mental disorders) based on motion recognition technologies. To address these issues, in the current work, we propose an end-to-end abnormal behaviour detection framework from a new perspective in conjunction with the Graph Convolutional Network (GCN) and a 3D Convolutional Neural Network (3DCNN). Specifically, we first train a one-class classifier to extract features and estimate abnormality scores. To improve the performance of abnormal behavior detection, GCN is used to model the similarity between video clips for the correction of noisy labels. Then, based on this framework, GCN recognizes the normal behavior clips in the abnormal video and removes them, while the clips identified as abnormal behavior are retained. Finally, a 3D CNN is used to extract spatiotemporal features to classify different abnormal behaviors. In order to better detect the violent behavior of individuals with mental disorders, the paper focuses on the UCF-Crime dataset with various types of violent behaviors. By experimenting with this dataset, the classification accuracy reaches 37.9%, which is significantly better than that of the current state-of-the-art approaches.

摘要

患有精神障碍的人的异常或暴力行为很常见。当患有精神障碍的人在公共场所表现出异常行为时,他们可能会对他人以及自己造成身心伤害。因此,有必要使用视觉监控系统来监测他们的行为。然而,基于运动识别技术自动检测人类异常行为(尤其是患有精神障碍的人)具有挑战性。为了解决这些问题,在当前的工作中,我们结合图卷积网络(GCN)和三维卷积神经网络(3DCNN),从一个新的角度提出了一个端到端的异常行为检测框架。具体来说,我们首先训练一个单类分类器来提取特征并估计异常分数。为了提高异常行为检测的性能,使用GCN对视频片段之间的相似性进行建模,以校正噪声标签。然后,基于这个框架,GCN识别异常视频中的正常行为片段并将其去除,而被识别为异常行为的片段则被保留。最后,使用3D CNN提取时空特征来对不同的异常行为进行分类。为了更好地检测患有精神障碍的人的暴力行为,本文重点研究了具有各种暴力行为的UCF-Crime数据集。通过对该数据集进行实验,分类准确率达到37.9%,明显优于当前最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验