Singh Yashbir, Hathaway Quincy A, Dinakar Karthik, Shaw Leslee J, Erickson Bradley, Lopez-Jimenez Francisco, Bhatt Deepak L
Department of Radiology, Mayo Clinic, Rochester, MN.
Department of Radiology, University of Pennsylvania, Philadelphia, PA.
Mayo Clin Proc Digit Health. 2025 Mar 28;3(2):100217. doi: 10.1016/j.mcpdig.2025.100217. eCollection 2025 Jun.
This article aimed to explore topological uncertainty in medical imaging, particularly in assessing coronary artery calcification using artificial intelligence (AI). Topological uncertainty refers to ambiguities in spatial and structural characteristics of medical features, which can impact the interpretation of coronary plaques. The article discusses the challenges of integrating AI with topological considerations and the need for specialized methodologies beyond traditional performance metrics. It highlights advancements in quantifying topological uncertainty, including the use of persistent homology and topological data analysis techniques. The importance of standardization in methodologies and ethical considerations in AI deployment are emphasized. It also outlines various types of uncertainty in topological frameworks for coronary plaques, categorizing them as quantifiable and controllable or quantifiable and not controllable. Future directions include developing AI algorithms that incorporate topological insights, establishing standardized protocols, and exploring ethical implications to revolutionize cardiovascular care through personalized treatment plans guided by sophisticated topological analysis. Recognizing and quantifying topological uncertainty in medical imaging as AI emerges is critical. Exploring topological uncertainty in coronary artery disease will revolutionize cardiovascular care, promising enhanced precision and personalization in diagnostics and treatment for millions affected by cardiovascular diseases.
本文旨在探讨医学成像中的拓扑不确定性,特别是在使用人工智能(AI)评估冠状动脉钙化方面。拓扑不确定性是指医学特征在空间和结构特征上的模糊性,这可能会影响对冠状动脉斑块的解读。本文讨论了将人工智能与拓扑考量相结合的挑战,以及超越传统性能指标的专门方法的必要性。它强调了在量化拓扑不确定性方面的进展,包括使用持久同调与拓扑数据分析技术。文中还强调了方法标准化的重要性以及人工智能部署中的伦理考量。它还概述了冠状动脉斑块拓扑框架中的各种不确定性类型,将它们分类为可量化且可控或可量化但不可控。未来的方向包括开发纳入拓扑见解的人工智能算法、建立标准化协议,以及通过由复杂拓扑分析指导的个性化治疗方案探索伦理影响,从而彻底改变心血管护理。随着人工智能的出现,认识并量化医学成像中的拓扑不确定性至关重要。探索冠状动脉疾病中的拓扑不确定性将彻底改变心血管护理,有望提高数百万心血管疾病患者诊断和治疗的精度及个性化程度。