Ahmed Sabeen, Parker Nathan, Park Margaret, Jeong Daniel, Peres Lauren, Davis Evan W, Permuth Jennifer B, Siegel Erin, Schabath Matthew B, Yilmaz Yasin, Rasool Ghulam
Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL.
Department of Electrical Engineering, University of South Florida, Tampa, FL.
medRxiv. 2025 Apr 25:2025.04.21.25326162. doi: 10.1101/2025.04.21.25326162.
Cancer cachexia is a common metabolic disorder characterized by severe muscle atrophy which is associated with poor prognosis and quality of life. Monitoring skeletal muscle area (SMA) longitudinally through computed tomography (CT) scans, an imaging modality routinely acquired in cancer care, is an effective way to identify and track this condition. However, existing tools often lack full automation and exhibit inconsistent accuracy, limiting their potential for integration into clinical workflows. To address these challenges, we developed SMAART-AI (Skeletal Muscle Assessment-Automated and Reliable Tool-based on AI), an end-to-end automated pipeline powered by deep learning models (nnU-Net 2D) trained on mid-third lumbar level CT images with 5-fold cross-validation, ensuring generalizability and robustness. SMAART-AI incorporates an uncertainty-based mechanism to flag high-error SMA predictions for expert review, enhancing reliability. We combined the SMA, skeletal muscle index, BMI, and clinical data to train a multi-layer perceptron (MLP) model designed to predict cachexia at the time of cancer diagnosis. Tested on the gastroesophageal cancer dataset, SMAART-AI achieved a Dice score of 97.80% ± 0.93%, with SMA estimated across all four datasets in this study at a median absolute error of 2.48% compared to manual annotations with SliceOmatic. Uncertainty metrics-variance, entropy, and coefficient of variation-strongly correlated with SMA prediction errors (0.83, 0.76, and 0.73 respectively). The MLP model predicts cachexia with 79% precision, providing clinicians with a reliable tool for early diagnosis and intervention. By combining automation, accuracy, and uncertainty awareness, SMAART-AI bridges the gap between research and clinical application, offering a transformative approach to managing cancer cachexia.
癌症恶病质是一种常见的代谢紊乱,其特征为严重的肌肉萎缩,这与预后不良和生活质量相关。通过计算机断层扫描(CT)进行骨骼肌面积(SMA)的纵向监测是一种有效的方法,CT扫描是癌症治疗中常规进行的一种成像方式,可用于识别和追踪这种情况。然而,现有工具往往缺乏完全自动化,且准确性不一致,限制了它们整合到临床工作流程中的潜力。为应对这些挑战,我们开发了SMAART-AI(基于人工智能的骨骼肌评估自动化可靠工具),这是一个由深度学习模型(nnU-Net 2D)驱动的端到端自动化流程,该模型在第三腰椎水平的CT图像上进行了5折交叉验证训练,确保了通用性和稳健性。SMAART-AI采用了一种基于不确定性的机制来标记高误差的SMA预测结果以供专家审核,从而提高可靠性。我们结合了SMA、骨骼肌指数、BMI和临床数据来训练一个多层感知器(MLP)模型,旨在预测癌症诊断时的恶病质。在食管癌数据集上进行测试时,SMAART-AI的Dice评分为97.80%±0.93%,在本研究的所有四个数据集中,与使用SliceOmatic进行手动标注相比,SMA的估计中位绝对误差为2.48%。不确定性指标——方差、熵和变异系数——与SMA预测误差高度相关(分别为0.83、0.76和0.73)。MLP模型预测恶病质的精度为79%,为临床医生提供了一个用于早期诊断和干预的可靠工具。通过结合自动化、准确性和不确定性感知,SMAART-AI弥合了研究与临床应用之间的差距,为癌症恶病质的管理提供了一种变革性方法。