Suppr超能文献

基于多期腹部 CT 的肾肿瘤自动纹理特征分析框架:手术、病理和分子评估

An automatic texture feature analysis framework of renal tumor: surgical, pathological, and molecular evaluation based on multi-phase abdominal CT.

机构信息

Luohu Clinical Institute, Shantou University Medical College, Shantou, 515000, China.

Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518000, China.

出版信息

Eur Radiol. 2024 Jan;34(1):355-366. doi: 10.1007/s00330-023-10016-4. Epub 2023 Aug 1.

Abstract

OBJECTIVES

To determine whether the texture feature analysis of multi-phase abdominal CT can provide a robust prediction of benign and malignant, histological subtype, pathological stage, nephrectomy risk, pathological grade, and Ki67 index in renal tumor.

METHODS

A total of 1051 participants with renal tumor were split into the internal cohort (850 patients from four different hospitals) and the external testing cohort (201 patients from another local hospital). The proposed framework comprised a 3D-kidney and tumor segmentation model by 3D-UNet, a feature extractor for the regions of interest based on radiomics and image dimension reduction, and the six classifiers by XGBoost. A quantitative model interpretation method called SHAP was used to explore the contribution of each feature.

RESULTS

The proposed multi-phase abdominal CT model provides robust prediction for benign and malignant, histological subtype, pathological stage, nephrectomy risk, pathological grade, and Ki67 index in the internal validation set, with the AUROC values of 0.88 ± 0.1, 0.90 ± 0.1, 0.91 ± 0.1, 0.89 ± 0.1, 0.84 ± 0.1, and 0.88 ± 0.1, respectively. The external testing set also showed impressive results, with AUROC values of 0.83 ± 0.1, 0.83 ± 0.1, 0.85 ± 0.1, 0.81 ± 0.1, 0.79 ± 0.1, and 0.81 ± 0.1, respectively. The radiomics feature including the first-order statistics, the tumor size-related morphology, and the shape-related tumor features contributed most to the model predictions.

CONCLUSIONS

Automatic texture feature analysis of abdominal multi-phase CT provides reliable predictions for multi-tasks, suggesting the potential usage of clinical application.

CLINICAL RELEVANCE STATEMENT

The automatic texture feature analysis framework, based on multi-phase abdominal CT, provides robust and reliable predictions for multi-tasks. These valuable insights can serve as a guiding tool for clinical diagnosis and treatment, making medical imaging an essential component in the process.

KEY POINTS

• The automatic texture feature analysis framework based on multi-phase abdominal CT can provide more accurate prediction of benign and malignant, histological subtype, pathological stage, nephrectomy risk, pathological grade, and Ki67 index in renal tumor. • The quantitative decomposition of the prediction model was conducted to explore the contribution of the extracted feature. • The study involving 1051 patients from 5 medical centers, along with a heterogeneous external data testing strategy, can be seamlessly transferred to various tasks involving new datasets.

摘要

目的

探讨多期腹部 CT 纹理特征分析能否为肾肿瘤的良恶性、组织学亚型、病理分期、肾切除风险、病理分级和 Ki67 指数提供可靠预测。

方法

将 1051 例肾肿瘤患者分为内部队列(4 家不同医院的 850 例患者)和外部测试队列(另一家当地医院的 201 例患者)。该框架由 3D-UNet 进行的 3D 肾脏和肿瘤分割模型、基于放射组学和图像降维的感兴趣区域特征提取器以及 XGBoost 分类器组成。使用 SHAP 等定量模型解释方法来探讨每个特征的贡献。

结果

多期腹部 CT 模型在内部验证集中对良恶性、组织学亚型、病理分期、肾切除风险、病理分级和 Ki67 指数的预测均具有较高的稳健性,AUROC 值分别为 0.88±0.1、0.90±0.1、0.91±0.1、0.89±0.1、0.84±0.1 和 0.88±0.1。外部测试集也显示出令人印象深刻的结果,AUROC 值分别为 0.83±0.1、0.83±0.1、0.85±0.1、0.81±0.1、0.79±0.1 和 0.81±0.1。对模型预测贡献最大的是纹理特征包括一阶统计量、肿瘤大小相关形态和形状相关肿瘤特征。

结论

腹部多期 CT 的自动纹理特征分析可为多项任务提供可靠的预测,提示其在临床应用中的潜在用途。

临床相关性声明

基于多期腹部 CT 的自动纹理特征分析框架可为肾肿瘤的多项任务提供更准确的预测。这些有价值的见解可以作为临床诊断和治疗的指导工具,使医学影像学成为该过程中不可或缺的一部分。

重点

  1. 基于多期腹部 CT 的自动纹理特征分析框架可为肾肿瘤的良恶性、组织学亚型、病理分期、肾切除风险、病理分级和 Ki67 指数提供更准确的预测。

  2. 对预测模型进行了定量分解,以探讨提取特征的贡献。

  3. 该研究涉及来自 5 个医疗中心的 1051 例患者,并采用了异构的外部数据测试策略,可无缝转移到涉及新数据集的各种任务中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验