Liao Hao-Chun, Lin Chin, Wang Chih-Hung, Fang Wen-Hui
Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Republic of China.
Artificial Intelligence of Things Center, Tri-Service General Hospital, National Defense Medical Center, Taipei, Republic of China.
Digit Health. 2023 Jul 28;9:20552076231191055. doi: 10.1177/20552076231191055. eCollection 2023 Jan-Dec.
Chest X-rays (CXRs) convey much illegible physiological information that deep learning model (DLM) has been reported interpreting successfully. Since the electrocardiogram age established by DLM was revealed as a heart biological marker, we hypothesize that CXR age has similar potential to describe the heart and lung states. Therefore, we developed a DLM to predict sex and age through CXR and analyzed its relation with future cardiovascular diseases (CVD).
A total of 90,396 CXRs aged 20 to 90 were collected and separated into a development set with 53,102 CXRs and demographic information pairs, a tuning set with 7073 pairs, an internal validation set with 17,364 pairs, and an external validation set with 12,857 pairs. The study trained DLM with development set for estimating age and sex and compared them to actual information.
The mean absolute errors of predicted age were 4.803 and 4.313 years in the internal and external validation sets, respectively. The area under the curve of sex analysis was 0.9993 and 0.9988 in the internal and external validation sets, respectively. Patients whose CXR age was 5 years older than chronologic age lead to higher risk of all-cause mortality (hazard ratio (HR): 2.42, 95% confidence interval (CI): 2.00-2.92), cardiovascular (CV)-cause mortality (HR: 7.57, 95% CI: 4.55-12.60), new-onset heart failure (HR: 2.07, 95% CI: 1.56-2.76), new-onset chronic kidney disease (HR: 1.73, 95% CI: 1.46-2.05), new-onset acute myocardial infarction (HR: 1.80, 95% CI: 1.12-2.92), new-onset stroke (HR: 1.45, 95% CI: 1.10-1.90), new-onset coronary artery disease (HR: 1.26, 95% CI: 1.04-1.52), and new-onset atrial fibrillation (HR: 1.43, 95% CI: 1.01-2.02).
Using DLM to predict CXR age provided additional information for future CVDs. Older CXR age is an accessible risk classification tool for clinician use.
胸部X光片(CXR)传达了许多难以辨认的生理信息,据报道深度学习模型(DLM)已成功对其进行解读。由于DLM确定的心电图年龄已被揭示为一种心脏生物学标志物,我们假设CXR年龄具有类似的潜力来描述心肺状态。因此,我们开发了一种通过CXR预测性别和年龄的DLM,并分析其与未来心血管疾病(CVD)的关系。
共收集了90396张年龄在20至90岁之间的CXR,并将其分为一个包含53102对CXR和人口统计学信息的开发集、一个包含7073对的调整集、一个包含17364对的内部验证集和一个包含12857对的外部验证集。该研究使用开发集训练DLM以估计年龄和性别,并将其与实际信息进行比较。
内部和外部验证集中预测年龄的平均绝对误差分别为4.803岁和4.313岁。性别分析的曲线下面积在内部和外部验证集中分别为0.9993和0.9988。CXR年龄比实际年龄大5岁的患者导致全因死亡率(风险比(HR):2.42,95%置信区间(CI):2.00 - 2.92)、心血管(CV)病因死亡率(HR:7.57,95% CI:4.55 - 12.60)、新发心力衰竭(HR:2.07,95% CI:1.56 - 2.76)、新发慢性肾病(HR:1.73,95% CI:1.46 - 2.05)、新发急性心肌梗死(HR:1.80,95% CI:1.12 - 2.92)、新发中风(HR:1.45,95% CI:1.10 - 1.90)、新发冠状动脉疾病(HR:1.26,95% CI:1.04 - 1.52)和新发心房颤动(HR:1.43,95% CI:1.01 - 2.02)的风险更高。
使用DLM预测CXR年龄为未来的CVD提供了额外信息。较高的CXR年龄是临床医生可用的一种易于获取的风险分类工具。