Chang Chiao-Hsiang, Lin Chin-Sheng, Luo Yu-Sheng, Lee Yung-Tsai, Lin Chin
Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
Front Cardiovasc Med. 2022 Feb 8;9:754909. doi: 10.3389/fcvm.2022.754909. eCollection 2022.
The biological age progression of the heart varies from person to person. We developed a deep learning model (DLM) to predict the biological age ECG to explore its contribution to future cardiovascular diseases (CVDs).
There were 71,741 cases ranging from 20 to 80 years old recruited from the health examination center. The development set used 32,707 cases to train the DLM for estimating the ECG-age, and 8,295 cases were used as the tuning set. The validation set included 30,469 ECGs to follow the outcomes, including all-cause mortality, cardiovascular-cause mortality, heart failure (HF), diabetes mellitus (DM), chronic kidney disease (CKD), acute myocardial infarction (AMI), stroke (STK), coronary artery disease (CAD), atrial fibrillation (AF), and hypertension (HTN). Two independent external validation sets (SaMi-Trop and CODE15) were also used to validate our DLM.
The mean absolute errors of chronologic age and ECG-age was 6.899 years ( = 0.822). The higher difference between ECG-age and chronological age was related to more comorbidities and abnormal ECG rhythm. The cases with the difference of more than 7 years had higher risk on the all-cause mortality [hazard ratio (HR): 1.61, 95% CI: 1.23-2.12], CV-cause mortality (HR: 3.49, 95% CI: 1.74-7.01), HF (HR: 2.79, 95% CI: 2.25-3.45), DM (HR: 1.70, 95% CI: 1.53-1.89), CKD (HR: 1.67, 95% CI: 1.41-1.97), AMI (HR: 1.76, 95% CI: 1.20-2.57), STK (HR: 1.65, 95% CI: 1.42-1.92), CAD (HR: 1.24, 95% CI: 1.12-1.37), AF (HR: 2.38, 95% CI: 1.86-3.04), and HTN (HR: 1.67, 95% CI: 1.51-1.85). The external validation sets also validated that an ECG-age >7 years compare to chronologic age had 3.16-fold risk (95% CI: 1.72-5.78) and 1.59-fold risk (95% CI: 1.45-1.74) on all-cause mortality in SaMi-Trop and CODE15 cohorts. The ECG-age significantly contributed additional information on heart failure, stroke, coronary artery disease, and atrial fibrillation predictions after considering all the known risk factors.
The ECG-age estimated DLM provides additional information for CVD incidence. Older ECG-age is correlated with not only on mortality but also on other CVDs compared with chronological age.
心脏的生物学年龄进展因人而异。我们开发了一种深度学习模型(DLM)来预测心电图的生物学年龄,以探究其对未来心血管疾病(CVD)的影响。
从健康体检中心招募了71741例年龄在20至80岁之间的病例。开发集使用32707例病例来训练DLM以估计心电图年龄,8295例病例用作调谐集。验证集包括30469份心电图,用于追踪结果,包括全因死亡率、心血管疾病导致的死亡率、心力衰竭(HF)、糖尿病(DM)、慢性肾病(CKD)、急性心肌梗死(AMI)、中风(STK)、冠状动脉疾病(CAD)、心房颤动(AF)和高血压(HTN)。还使用了两个独立的外部验证集(SaMi-Trop和CODE15)来验证我们的DLM。
实际年龄与心电图年龄的平均绝对误差为6.899岁( = 0.822)。心电图年龄与实际年龄之间的差异越大,合并症和异常心电图节律就越多。差异超过7岁的病例在全因死亡率方面的风险更高[风险比(HR):1.61,95%置信区间:1.23 - 2.12],心血管疾病导致的死亡率(HR:3.49,95%置信区间:1.74 - 7.01),心力衰竭(HR:2.79,95%置信区间:2.25 - 3.45),糖尿病(HR:1.70,95%置信区间:1.53 - 1.89),慢性肾病(HR:1.67,95%置信区间:1.41 - 1.97),急性心肌梗死(HR:1.76,95%置信区间:1.20 - 2.57),中风(HR:1.65,95%置信区间:1.42 - 1.92),冠状动脉疾病(HR:1.24,95%置信区间:1.12 - 1.37),心房颤动(HR:2.38,95%置信区间:1.86 - 3.04),以及高血压(HR:1.67,95%置信区间:1.51 - 1.85)。外部验证集也证实,与实际年龄相比,心电图年龄>7岁在SaMi-Trop和CODE15队列的全因死亡率方面分别有3.16倍(95%置信区间:1.72 - 5.78)和1.59倍(95%置信区间:1.45 - 1.74)的风险。在考虑所有已知风险因素后,心电图年龄显著为心力衰竭、中风、冠状动脉疾病和心房颤动的预测提供了额外信息。
通过DLM估计的心电图年龄为心血管疾病的发病提供了额外信息。与实际年龄相比,较高的心电图年龄不仅与死亡率相关,还与其他心血管疾病相关。