Suppr超能文献

q-pac:一个用于机器学习电荷平衡模型的Python软件包。

q-pac: A Python package for machine learned charge equilibration models.

作者信息

Vondrák Martin, Reuter Karsten, Margraf Johannes T

机构信息

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.

出版信息

J Chem Phys. 2023 Aug 7;159(5). doi: 10.1063/5.0156290.

Abstract

Many state-of-the art machine learning (ML) interatomic potentials are based on a local or semi-local (message-passing) representation of chemical environments. They, therefore, lack a description of long-range electrostatic interactions and non-local charge transfer. In this context, there has been much interest in developing ML-based charge equilibration models, which allow the rigorous calculation of long-range electrostatic interactions and the energetic response of molecules and materials to external fields. The recently reported kQEq method achieves this by predicting local atomic electronegativities using Kernel ML. This paper describes the q-pac Python package, which implements several algorithmic and methodological advances to kQEq and provides an extendable framework for the development of ML charge equilibration models.

摘要

许多先进的机器学习(ML)原子间势基于化学环境的局部或半局部(消息传递)表示。因此,它们缺乏对长程静电相互作用和非局部电荷转移的描述。在这种背景下,人们对开发基于ML的电荷平衡模型非常感兴趣,该模型能够严格计算长程静电相互作用以及分子和材料对外部场的能量响应。最近报道的kQEq方法通过使用核机器学习预测局部原子电负性来实现这一点。本文描述了q-pac Python软件包,它对kQEq实现了多项算法和方法上的改进,并为ML电荷平衡模型的开发提供了一个可扩展的框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验