Suppr超能文献

PANNA 2.0: Efficient neural network interatomic potentials and new architectures.

作者信息

Pellegrini Franco, Lot Ruggero, Shaidu Yusuf, Küçükbenli Emine

机构信息

Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.

Department of Physics, University of California Berkeley, Berkeley, California 94720, USA.

出版信息

J Chem Phys. 2023 Aug 28;159(8). doi: 10.1063/5.0158075.

Abstract

We present the latest release of PANNA 2.0 (Properties from Artificial Neural Network Architectures), a code for the generation of neural network interatomic potentials based on local atomic descriptors and multilayer perceptrons. Built on a new back end, this new release of PANNA features improved tools for customizing and monitoring network training, better graphics processing unit support including a fast descriptor calculator, new plugins for external codes, and a new architecture for the inclusion of long-range electrostatic interactions through a variational charge equilibration scheme. We present an overview of the main features of the new code, and several benchmarks comparing the accuracy of PANNA models to the state of the art, on commonly used benchmarks as well as richer datasets.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验