Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
Sci Adv. 2023 Aug 2;9(31):eadh7828. doi: 10.1126/sciadv.adh7828.
Strong fluorescence and high catalytic activities cannot be achieved simultaneously due to conflicts in free electron utilization, resulting in a lack of bioactivity of most near-infrared-II (NIR-II) fluorophores. To circumvent this challenge, we developed atomically precise Au clusters with strong NIR-II fluorescence ranging from 950 to 1300 nm exhibiting potent enzyme-mimetic activities through atomic engineering to create active Cu single-atom sites. The developed AuCu clusters show 18-fold higher antioxidant, 90-fold higher catalase-like, and 3-fold higher superoxide dismutase-like activities than Au clusters, with negligible fluorescence loss. Doping with single Cu atoms decreases the bandgap from 1.33 to 1.28 eV by predominant contributions from Cu states, and Cu with lost electron states effectuates high catalytic activities. The renal clearable clusters can monitor cisplatin-induced renal injury in the 20- to 120-minute window and visualize it in three dimensions using NIR-II light-sheet microscopy. Furthermore, the clusters inhibit oxidative stress and inflammation in the cisplatin-treated mouse model, particularly in the kidneys and brain.
由于自由电子利用之间的冲突,强荧光和高催化活性不能同时实现,导致大多数近红外二区(NIR-II)荧光团缺乏生物活性。为了克服这一挑战,我们通过原子工程开发了具有从 950 到 1300nm 范围内强 NIR-II 荧光的原子精确 Au 簇,通过创建活性 Cu 单原子位点来表现出有效的酶模拟活性。与 Au 簇相比,所开发的 AuCu 簇显示出 18 倍更高的抗氧化、90 倍更高的过氧化氢酶样和 3 倍更高的超氧化物歧化酶样活性,而荧光损失可忽略不计。掺杂单个 Cu 原子通过 Cu 态的主要贡献将能带隙从 1.33eV 降低到 1.28eV,而失去电子态的 Cu 则实现了高催化活性。可经肾清除的簇可在 20-120 分钟的窗口内监测顺铂诱导的肾损伤,并使用近红外二区光片显微镜对其进行三维可视化。此外,该簇抑制顺铂处理的小鼠模型中的氧化应激和炎症,特别是在肾脏和大脑中。