Suppr超能文献

使用机器学习模型对希腊 COVID-19 流行病学监测报告进行情感分析。

Sentiment analysis of epidemiological surveillance reports on COVID-19 in Greece using machine learning models.

机构信息

Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.

Pre-Clinical Education, Laboratory of Social Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.

出版信息

Front Public Health. 2023 Jul 18;11:1191730. doi: 10.3389/fpubh.2023.1191730. eCollection 2023.

Abstract

The present research deals with sentiment analysis performed with Microsoft Azure Machine Learning Studio to classify Facebook posts on the Greek National Public Health Organization (EODY) from November 2021 to January 2022 during the pandemic. Positive, negative and neutral sentiments were included after processing 300 reviews. This approach involved analyzing the words appearing in the comments and exploring the sentiments related to daily surveillance reports of COVID-19 published on the EODY Facebook page. Moreover, machine learning algorithms were implemented to predict the classification of sentiments. This research assesses the efficiency of a few popular machine learning models, which is one of the initial efforts in Greece in this domain. People have negative sentiments toward COVID surveillance reports. Words with the highest frequency of occurrence include government, vaccinated people, unvaccinated, telephone communication, health measures, virus, COVID-19 rapid/molecular tests, and of course, COVID-19. The experimental results disclose additionally that two classifiers, namely two class Neural Network and two class Bayes Point Machine, achieved high sentiment analysis accuracy and F1 score, particularly 87% and over 35%. A significant limitation of this study may be the need for more comparison with other research attempts that identified the sentiments of the EODY surveillance reports of COVID in Greece. Machine learning models can provide critical information combating public health hazards and enrich communication strategies and proactive actions in public health issues and opinion management during the COVID-19 pandemic.

摘要

本研究利用 Microsoft Azure Machine Learning Studio 进行情感分析,以对 2021 年 11 月至 2022 年 1 月期间大流行期间在 Facebook 上发布的有关希腊国家公共卫生组织 (EODY) 的帖子进行分类。在处理了 300 条评论后,纳入了积极、消极和中性情绪。该方法涉及分析评论中出现的单词,并探讨与 EODY Facebook 页面上发布的 COVID-19 日常监测报告相关的情绪。此外,还实施了机器学习算法来预测情绪分类。这项研究评估了几种流行的机器学习模型的效率,这是希腊在该领域的初步努力之一。人们对 COVID 监测报告持负面情绪。出现频率最高的词包括政府、接种疫苗的人、未接种疫苗的人、电话沟通、卫生措施、病毒、COVID-19 快速/分子检测,当然还有 COVID-19。实验结果还表明,两种分类器,即双类神经网络和双类贝叶斯点机,实现了高情感分析准确性和 F1 分数,特别是 87%和 35%以上。这项研究的一个显著局限性可能是需要与其他研究尝试进行更多比较,这些研究尝试确定了希腊 EODY 对 COVID 的监测报告的情绪。机器学习模型可以提供对抗公共卫生危害的关键信息,并丰富在 COVID-19 大流行期间公共卫生问题和意见管理中的沟通策略和主动行动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9991/10392838/5dd459db52fa/fpubh-11-1191730-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验