Davies K J, Sevanian A, Muakkassah-Kelly S F, Hochstein P
Biochem J. 1986 May 1;235(3):747-54. doi: 10.1042/bj2350747.
In order to survive in an oxygen environment, aerobic organisms have developed numerous mechanisms to protect against oxygen radicals and singlet oxygen. One such mechanism, which appears to have attained particular significance during primate evolution, is the direct scavenging of oxygen radicals, singlet oxygen, oxo-haem oxidants and hydroperoxyl radicals by uric acid. In the present paper we demonstrate that another important 'antioxidant' property of uric acid is the ability to form stable co-ordination complexes with iron ions. Formation of urate-Fe3+ complexes dramatically inhibits Fe3+-catalysed ascorbate oxidation, as well as lipid peroxidation in liposomes and rat liver microsomal fraction. In contrast with antioxidant scavenger reactions, the inhibition of ascorbate oxidation and lipid peroxidation provided by urate's ability to bind iron ions does not involve urate oxidation. Association constants (Ka) for urate-iron ion complexes were determined by fluorescence-quenching techniques. The Ka for a 1:1 urate-Fe3+ complex was found to be 2.4 X 10(5), whereas the Ka for a 1:1 urate-Fe2+ complex was determined to be 1.9 X 10(4). Our experiments also revealed that urate can form a 2:1 complex with Fe3+ with an association constant for the second urate molecule (K'a) of approx. 4.5 X 10(5). From these data we estimate an overall stability constant (Ks approximately equal to Ka X K'a) for urate-Fe3+ complexes of approx. 1.1 X 10(11). Polarographic measurements revealed that (upon binding) urate decreases the reduction potential for the Fe2+/Fe3+ half-reaction from -0.77 V to -0.67 V. Thus urate slightly diminishes the oxidizing potential of Fe3+. The present results provide a mechanistic explanation for our previous report that urate protects ascorbate from oxidation in human blood. The almost saturating concentration of urate normally found in human plasma (up to 0.6 mM) represents 5-10 times the plasma ascorbate concentration, and is orders of magnitude higher than the 'free' iron ion concentration. These considerations point to the physiological significance of our findings.
为了在有氧环境中生存,需氧生物已进化出多种机制来抵御氧自由基和单线态氧。其中一种机制,在灵长类动物进化过程中似乎具有特殊重要性,即尿酸对氧自由基、单线态氧、氧合血红素氧化剂和氢过氧自由基的直接清除作用。在本文中,我们证明了尿酸的另一个重要“抗氧化”特性是它与铁离子形成稳定配位络合物的能力。尿酸 - Fe3 +络合物的形成显著抑制了Fe3 +催化的抗坏血酸氧化,以及脂质体和大鼠肝微粒体组分中的脂质过氧化。与抗氧化清除剂反应不同,尿酸结合铁离子抑制抗坏血酸氧化和脂质过氧化的过程并不涉及尿酸的氧化。通过荧光猝灭技术测定了尿酸 - 铁离子络合物的缔合常数(Ka)。发现1:1尿酸 - Fe3 +络合物的Ka为2.4×10(5),而1:1尿酸 - Fe2 +络合物的Ka测定为1.9×10(4)。我们的实验还表明,尿酸可与Fe3 +形成2:1络合物,第二个尿酸分子的缔合常数(K'a)约为4.5×10(5)。根据这些数据,我们估计尿酸 - Fe3 +络合物的总稳定常数(Ks约等于Ka×K'a)约为1.1×10(11)。极谱测量表明,(结合后)尿酸将Fe2 + / Fe3 +半反应的还原电位从 - 0.77 V降至 - 0.67 V。因此,尿酸略微降低了Fe3 +的氧化电位。目前的结果为我们之前关于尿酸保护人体血液中抗坏血酸不被氧化的报道提供了一个机理解释。人体血浆中通常发现的几乎饱和浓度的尿酸(高达0.6 mM)是血浆抗坏血酸浓度的5 - 10倍,并且比“游离”铁离子浓度高几个数量级。这些考虑因素表明了我们研究结果的生理意义。