Suppr超能文献

利用生物信息学和基于网络的筛选方法全面鉴定黑色素瘤癌症的潜在分子靶标和小分子药物候选物。

A comprehensive identification of potential molecular targets and small drugs candidate for melanoma cancer using bioinformatics and network-based screening approach.

机构信息

Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh.

Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh.

出版信息

J Biomol Struct Dyn. 2024 Sep;42(14):7349-7369. doi: 10.1080/07391102.2023.2240409. Epub 2023 Aug 3.

Abstract

Melanoma is the third most common malignant skin tumor and has increased in morbidity and mortality over the previous decade due to its rapid spread into the bloodstream or lymphatic system. This study used integrated bioinformatics and network-based methodologies to reliably identify molecular targets and small molecular medicines that may be more successful for Melanoma diagnosis, prognosis and treatment. The statistical LIMMA approach utilized for bioinformatics analysis in this study found 246 common differentially expressed genes (cDEGs) between case and control samples from two microarray gene-expression datasets (GSE130244 and GSE15605). Protein-protein interaction network study revealed 15 cDEGs (PTK2, STAT1, PNO1, CXCR4, WASL, FN1, RUNX2, SOCS3, ITGA4, GNG2, CDK6, BRAF, AGO2, GTF2H1 and AR) to be critical in the development of melanoma (KGs). According to regulatory network analysis, the most important transcriptional and post-transcriptional regulators of DEGs and hub-DEGs are ten transcription factors and three miRNAs. We discovered the pathogenetic mechanisms of MC by studying DEGs' biological processes, molecular function, cellular components and KEGG pathways. We used molecular docking and dynamics modeling to select the four most expressed genes responsible for melanoma malignancy to identify therapeutic candidates. Then, utilizing the Connectivity Map (CMap) database, we analyzed the top 4-hub-DEGs-guided repurposable drugs. We validated four melanoma cancer drugs (Fisetin, Epicatechin Gallate, 1237586-97-8 and PF 431396) using molecular dynamics simulation with their target proteins. As a result, the results of this study may provide resources to researchers and medical professionals for the wet-lab validation of MC diagnosis, prognosis and treatments.Communicated by Ramaswamy H. Sarma.

摘要

黑色素瘤是第三大常见的皮肤恶性肿瘤,由于其迅速扩散到血液或淋巴系统,在过去十年中发病率和死亡率都有所增加。本研究采用整合的生物信息学和基于网络的方法,可靠地鉴定了可能对黑色素瘤诊断、预后和治疗更有效的分子靶标和小分子药物。本研究中用于生物信息学分析的统计 LIMMA 方法发现了来自两个微阵列基因表达数据集(GSE130244 和 GSE15605)的病例和对照样本之间的 246 个常见差异表达基因(cDEGs)。蛋白质-蛋白质相互作用网络研究揭示了 15 个 cDEGs(PTK2、STAT1、PNO1、CXCR4、WASL、FN1、RUNX2、SOCS3、ITGA4、GNG2、CDK6、BRAF、AGO2、GTF2H1 和 AR)在黑色素瘤(KGs)的发生发展中至关重要。根据调控网络分析,DEGs 和 hub-DEGs 的最重要转录和转录后调控因子是十个转录因子和三个 miRNA。我们通过研究 DEGs 的生物学过程、分子功能、细胞成分和 KEGG 途径,发现了 MC 的发病机制。我们使用分子对接和动力学建模来选择负责黑色素瘤恶性的四个最表达基因,以鉴定治疗候选物。然后,利用连通性映射(CMap)数据库,我们分析了基于前 4 个 hub-DEGs 的可再利用药物。我们使用分子动力学模拟验证了四种黑色素瘤癌症药物(漆黄素、表儿茶素没食子酸酯、1237586-97-8 和 PF 431396)及其靶蛋白。因此,本研究的结果可能为研究人员和医疗专业人员提供资源,用于湿实验室验证黑色素瘤的诊断、预后和治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验