College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.
College of Biology, Department of Molecular Medicine, Hunan University, Changsha, China.
Commun Biol. 2024 Oct 30;7(1):1413. doi: 10.1038/s42003-024-07107-3.
Biomedical network learning offers fresh prospects for expediting drug repositioning. However, traditional network architectures struggle to quantify the relationship between micro-scale drug spatial structures and corresponding macro-scale biomedical networks, limiting their ability to capture key pharmacological properties and complex biomedical information crucial for drug screening and therapeutic discovery. Moreover, challenges such as difficulty in capturing long-range dependencies hinder current network-based approaches. To address these limitations, we introduce the Spatial Hierarchical Network, modeling molecular 3D structures and biological associations into a unified network. We propose an end-to-end framework, SpHN-VDA, integrating spatial hierarchical information through triple attention mechanisms to enhance machine understanding of molecular functionality and improve the accuracy of virus-drug association identification. SpHN-VDA outperforms leading models across three datasets, particularly excelling in out-of-distribution and cold-start scenarios. It also exhibits enhanced robustness against data perturbation, ranging from 20% to 40%. It accurately identifies critical motifs for binding sites, even without protein residue annotations. Leveraging reliability of SpHN-VDA, we have identified 25 potential candidate drugs through gene expression analysis and CMap. Molecular docking experiments with the SARS-CoV-2 spike protein further corroborate the predictions. This research highlights the broad potential of SpHN-VDA to enhance drug repositioning and identify effective treatments for various diseases.
生物医学网络学习为加速药物重新定位提供了新的前景。然而,传统的网络架构难以量化药物微观空间结构与相应的宏观生物医学网络之间的关系,限制了它们捕捉关键药理学性质和复杂生物医学信息的能力,这些性质和信息对于药物筛选和治疗发现至关重要。此外,捕获长程依赖关系的困难等挑战也限制了当前基于网络的方法。为了解决这些限制,我们引入了空间层次网络,将分子 3D 结构和生物关联建模到一个统一的网络中。我们提出了一个端到端框架 SpHN-VDA,通过三重注意力机制集成空间层次信息,以增强机器对分子功能的理解,并提高病毒-药物关联识别的准确性。SpHN-VDA 在三个数据集上的表现均优于领先模型,尤其是在分布外和冷启动场景下表现出色。它还表现出对数据扰动的增强鲁棒性,范围从 20%到 40%。它甚至可以在没有蛋白质残基注释的情况下准确识别结合位点的关键基序。利用 SpHN-VDA 的可靠性,我们通过基因表达分析和 CMap 确定了 25 种潜在的候选药物。与 SARS-CoV-2 刺突蛋白的分子对接实验进一步证实了这些预测。这项研究强调了 SpHN-VDA 具有广泛的潜力,可以增强药物重新定位,并为各种疾病确定有效的治疗方法。