Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA.
The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA.
Cell Death Differ. 2023 Sep;30(9):2078-2091. doi: 10.1038/s41418-023-01191-4. Epub 2023 Aug 3.
The discrimination of protein biological functions in different phases of the cell cycle is limited by the lack of experimental approaches that do not require pre-treatment with compounds affecting the cell cycle progression. Therefore, potential cycle-specific biological functions of a protein of interest could be biased by the effects of cell treatments. The OsTIR1/auxin-inducible degron (AID) system allows "on demand" selective and reversible protein degradation upon exposure to the phytohormone auxin. In the current format, this technology does not allow to study the effect of acute protein depletion selectively in one phase of the cell cycle, as auxin similarly affects all the treated cells irrespectively of their proliferation status. Therefore, the AID system requires coupling with cell synchronization techniques, which can alter the basal biological status of the studied cell population, as with previously available approaches. Here, we introduce a new AID system to Regulate OsTIR1 Levels based on the Cell Cycle Status (ROLECCS system), which induces proteolysis of both exogenously transfected and endogenous gene-edited targets in specific phases of the cell cycle. We validated the ROLECCS technology by down regulating the protein levels of TP53, one of the most studied tumor suppressor genes, with a widely known role in cell cycle progression. By using our novel tool, we observed that TP53 degradation is associated with increased number of micronuclei, and this phenotype is specifically achieved when TP53 is lost in S/G/M phases of the cell cycle, but not in G. Therefore, we propose the use of the ROLECCS system as a new improved way of studying the differential roles that target proteins may have in specific phases of the cell cycle.
细胞周期不同阶段中蛋白质生物功能的区分受到限制,因为缺乏不需要用影响细胞周期进程的化合物进行预处理的实验方法。因此,感兴趣蛋白质的潜在周期特异性生物学功能可能会受到细胞处理效应的影响。OsTIR1/生长素诱导的降解结构域(AID)系统允许在暴露于植物激素生长素时“按需”进行选择性和可逆的蛋白质降解。在当前的形式下,该技术不允许在细胞周期的一个阶段中选择性地研究急性蛋白质耗竭的影响,因为生长素同样会影响所有被处理的细胞,而不管它们的增殖状态如何。因此,AID 系统需要与细胞同步化技术结合使用,这可能会改变所研究细胞群体的基础生物学状态,就像以前可用的方法一样。在这里,我们引入了一种新的基于细胞周期状态的 OsTIR1 水平调控的 AID 系统(ROLECCS 系统),该系统可在细胞周期的特定阶段对转染的外源性和内源性基因编辑的靶标进行蛋白水解。我们通过下调 TP53(一种研究最广泛的肿瘤抑制基因之一,在细胞周期进展中具有广泛的作用)的蛋白水平来验证 ROLECCS 技术,这是我们的一种广泛使用的方法。通过使用我们的新工具,我们观察到 TP53 降解与微核数量的增加有关,并且这种表型仅在 TP53 在细胞周期的 S/G/M 期丢失时才能实现,而在 G1 期则不能实现。因此,我们建议使用 ROLECCS 系统作为研究靶蛋白在细胞周期特定阶段可能具有的不同作用的新改进方法。