Suppr超能文献

通过具有主动学习的多目标贝叶斯优化加速吡啶鎓盐的连续流动合成。

Continuous flow synthesis of pyridinium salts accelerated by multi-objective Bayesian optimization with active learning.

作者信息

Dunlap John H, Ethier Jeffrey G, Putnam-Neeb Amelia A, Iyer Sanjay, Luo Shao-Xiong Lennon, Feng Haosheng, Garrido Torres Jose Antonio, Doyle Abigail G, Swager Timothy M, Vaia Richard A, Mirau Peter, Crouse Christopher A, Baldwin Luke A

机构信息

Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson AFB OH 45433 USA

UES, Inc. Dayton OH 45431 USA.

出版信息

Chem Sci. 2023 Jul 12;14(30):8061-8069. doi: 10.1039/d3sc01303k. eCollection 2023 Aug 2.

Abstract

We report a human-in-the-loop implementation of the multi-objective experimental design a Bayesian optimization platform (EDBO+) towards the optimization of butylpyridinium bromide synthesis under continuous flow conditions. The algorithm simultaneously optimized reaction yield and production rate (or space-time yield) and generated a well defined Pareto front. The versatility of EDBO+ was demonstrated by expanding the reaction space mid-campaign by increasing the upper temperature limit. Incorporation of continuous flow techniques enabled improved control over reaction parameters compared to common batch chemistry processes, while providing a route towards future automated syntheses and improved scalability. To that end, we applied the open-source Python module, nmrglue, for semi-automated nuclear magnetic resonance (NMR) spectroscopy analysis, and compared the acquired outputs against those obtained through manual processing methods from spectra collected on both low-field (60 MHz) and high-field (400 MHz) NMR spectrometers. The EDBO+ based model was retrained with these four different datasets and the resulting Pareto front predictions provided insight into the effect of data analysis on model predictions. Finally, quaternization of poly(4-vinylpyridine) with bromobutane illustrated the extension of continuous flow chemistry to synthesize functional materials.

摘要

我们报告了一种人在回路中的多目标实验设计实现方式,即一个用于在连续流动条件下优化溴化丁基吡啶合成的贝叶斯优化平台(EDBO+)。该算法同时优化反应产率和生产率(或时空产率),并生成了明确的帕累托前沿。通过在实验过程中提高温度上限来扩大反应空间,证明了EDBO+的通用性。与传统的间歇化学过程相比,连续流动技术的引入能够更好地控制反应参数,同时为未来的自动化合成和提高可扩展性提供了一条途径。为此,我们应用开源Python模块nmrglue进行半自动核磁共振(NMR)光谱分析,并将采集到的输出结果与通过手动处理方法从低场(60 MHz)和高场(400 MHz)NMR光谱仪收集的光谱中获得的结果进行比较。基于EDBO+的模型使用这四个不同数据集进行了重新训练,所得的帕累托前沿预测结果揭示了数据分析对模型预测的影响。最后,聚(4-乙烯基吡啶)与溴丁烷的季铵化反应展示了连续流动化学在合成功能材料方面的拓展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c6d/10395269/3d99e65514dd/d3sc01303k-s1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验