Suppr超能文献

利用聚合上下文变换的 CT 图像金属伪影减少双域网络的改进方法。

An improved dual-domain network for metal artifact reduction in CT images using aggregated contextual transformations.

机构信息

School of Computer Science and Engineering, Laboratory of Image Science and Technology, Southeast University, Nanjing, 210000, Jiangsu, People's Republic of China.

Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education, People's Republic of China.

出版信息

Phys Med Biol. 2023 Aug 18;68(17). doi: 10.1088/1361-6560/aced78.

Abstract

. Metal artifact reduction (MAR) remains a challenging task due to the difficulty of removing artifacts while preserving anatomical details of the tissue. Although current dual-domain networks have shown promising performance in MAR, they heavily rely on the image domain, which can be too smooth and lose important information in the metal-affected area. To address this problem, we propose an improved dual domain network framework.. We enhance sinogram completion performance by utilizing an aggregated contextual transformations network in the sinogram domain. Furthermore, we utilize-projection-based linearized correction method to obtain images with beam-hardening artifacts removed, which are incorporated into the input of the image post-processing network to assist in training the image domain network. Finally, we train the sinogram domain network and the image domain network separately to their respective convergences.. In experiments conducted on a simulated dataset, our method achieves the best average RMSE of 25.1, SSIM of 0.973, and PSNR of 42.1, respectively.. The proposed method is capable of preserving tissue structures near metallic objects while eliminating metal artifacts from the reconstructed images. Related codes will be released athttps://github.com/Corinna-China/AOTDudoNet.

摘要

金属伪影降低(MAR)仍然是一项具有挑战性的任务,因为在保留组织解剖细节的同时去除伪影非常困难。虽然当前的双域网络在 MAR 方面表现出了有前景的性能,但它们严重依赖于图像域,这可能过于平滑并丢失金属影响区域的重要信息。为了解决这个问题,我们提出了一种改进的双域网络框架。我们通过在正弦图域中使用聚合上下文变换网络来增强正弦图完成性能。此外,我们利用基于投影的线性化校正方法来获得去除束硬化伪影的图像,并将其纳入图像后处理网络的输入中,以协助训练图像域网络。最后,我们分别训练正弦图域网络和图像域网络,直到它们各自收敛。在模拟数据集上进行的实验中,我们的方法分别达到了最佳的平均 RMSE 为 25.1、SSIM 为 0.973 和 PSNR 为 42.1。所提出的方法能够在重建图像中消除金属伪影的同时保留金属物体附近的组织结构。相关代码将在 https://github.com/Corinna-China/AOTDudoNet 上发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验