Battery Material Lab., Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.
Samsung R&D Institute Japan, Samsung Electronics, 2-1-11, Semba Nishi, Minoh, Osaka, Japan.
Nat Commun. 2023 Feb 11;14(1):782. doi: 10.1038/s41467-023-36401-7.
Lithium metal batteries (LMBs) with inorganic solid-state electrolytes are considered promising secondary battery systems because of their higher energy content than their Li-ion counterpart. However, the LMB performance remains unsatisfactory for commercialization, primarily owing to the inability of the inorganic solid-state electrolytes to hinder lithium dendrite propagation. Here, using an Ag-coated LiLaZrTaO (LLZTO) inorganic solid electrolyte in combination with a silver-carbon interlayer, we demonstrate the production of stable interfacially engineered lab-scale LMBs. Via experimental measurements and computational modelling, we prove that the interlayers strategy effectively regulates lithium stripping/plating and prevents dendrite penetration in the solid-state electrolyte pellet. By coupling the surface-engineered LLZTO with a lithium metal negative electrode, a high-voltage positive electrode with an ionic liquid-based liquid electrolyte solution in pouch cell configuration, we report 800 cycles at 1.6 mA/cm and 25 °C without applying external pressure. This cell enables an initial discharge capacity of about 3 mAh/cm and a discharge capacity retention of about 85%.
锂金属电池(LMBs)与无机固态电解质被认为是有前途的二次电池系统,因为它们的能量密度高于锂离子电池。然而,由于无机固态电解质无法阻止锂枝晶的生长,LMB 的性能仍不令人满意,无法实现商业化。在这里,我们使用涂覆有银的 LiLaZrTaO(LLZTO)无机固态电解质与银-碳夹层相结合,展示了稳定的界面工程化实验室规模的 LMB 的生产。通过实验测量和计算建模,我们证明了夹层策略可以有效地调节锂的剥离/电镀,并防止在固态电解质颗粒中出现枝晶穿透。通过将表面工程化的 LLZTO 与锂金属负极、带有离子液体的液态电解质溶液的高压正极相结合,我们在无外加压力的情况下,在 25°C 下以 1.6 mA/cm 的电流密度报告了 800 次循环。该电池的初始放电容量约为 3 mAh/cm,放电容量保持率约为 85%。