Suppr超能文献

DCTR U-Net:深度学习背景下的鼻咽癌医学图像自动分割算法

DCTR U-Net: automatic segmentation algorithm for medical images of nasopharyngeal cancer in the context of deep learning.

作者信息

Zeng Yan, Zeng PengHui, Shen ShaoDong, Liang Wei, Li Jun, Zhao Zhe, Zhang Kun, Shen Chong

机构信息

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Information and Communication Engineering, Hainan University, Haikou, China.

ChinaPersonnel Department, Hainan Medical University, Haikou, China.

出版信息

Front Oncol. 2023 Jun 30;13:1190075. doi: 10.3389/fonc.2023.1190075. eCollection 2023.

Abstract

Nasopharyngeal carcinoma (NPC) is a malignant tumor that occurs in the wall of the nasopharyngeal cavity and is prevalent in Southern China, Southeast Asia, North Africa, and the Middle East. According to studies, NPC is one of the most common malignant tumors in Hainan, China, and it has the highest incidence rate among otorhinolaryngological malignancies. We proposed a new deep learning network model to improve the segmentation accuracy of the target region of nasopharyngeal cancer. Our model is based on the U-Net-based network, to which we add Dilated Convolution Module, Transformer Module, and Residual Module. The new deep learning network model can effectively solve the problem of restricted convolutional fields of perception and achieve global and local multi-scale feature fusion. In our experiments, the proposed network was trained and validated using 10-fold cross-validation based on the records of 300 clinical patients. The results of our network were evaluated using the dice similarity coefficient (DSC) and the average symmetric surface distance (ASSD). The DSC and ASSD values are 0.852 and 0.544 mm, respectively. With the effective combination of the Dilated Convolution Module, Transformer Module, and Residual Module, we significantly improved the segmentation performance of the target region of the NPC.

摘要

鼻咽癌(NPC)是一种发生于鼻咽腔壁的恶性肿瘤,在中国南方、东南亚、北非和中东地区较为常见。据研究,鼻咽癌是中国海南最常见的恶性肿瘤之一,在耳鼻咽喉恶性肿瘤中发病率最高。我们提出了一种新的深度学习网络模型,以提高鼻咽癌靶区的分割精度。我们的模型基于基于U-Net的网络,并在此基础上添加了空洞卷积模块、Transformer模块和残差模块。新的深度学习网络模型能够有效解决感知卷积域受限的问题,实现全局和局部多尺度特征融合。在我们的实验中,基于300例临床患者的记录,采用10折交叉验证对所提出的网络进行训练和验证。我们的网络结果使用骰子相似系数(DSC)和平均对称表面距离(ASSD)进行评估。DSC和ASSD值分别为0.852和0.544毫米。通过空洞卷积模块、Transformer模块和残差模块的有效结合,我们显著提高了鼻咽癌靶区的分割性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ca1/10402756/9de7f11cf5b2/fonc-13-1190075-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验