Suppr超能文献

基于双投影独立成分分析模型的多站点功能磁共振成像数据的协调

Harmonization of multi-site functional MRI data with dual-projection based ICA model.

作者信息

Xu Huashuai, Hao Yuxing, Zhang Yunge, Zhou Dongyue, Kärkkäinen Tommi, Nickerson Lisa D, Li Huanjie, Cong Fengyu

机构信息

School of Biomedical Engineering, Dalian University of Technology, Dalian, China.

Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland.

出版信息

Front Neurosci. 2023 Jul 20;17:1225606. doi: 10.3389/fnins.2023.1225606. eCollection 2023.

Abstract

Modern neuroimaging studies frequently merge magnetic resonance imaging (MRI) data from multiple sites. A larger and more diverse group of participants can increase the statistical power, enhance the reliability and reproducibility of neuroimaging research, and obtain findings more representative of the general population. However, measurement biases caused by site differences in scanners represent a barrier when pooling data collected from different sites. The existence of site effects can mask biological effects and lead to spurious findings. We recently proposed a powerful denoising strategy that implements dual-projection (DP) theory based on ICA to remove site-related effects from pooled data, demonstrating the method for simulated and structural MRI data. This study investigates the use of our DP-based ICA denoising method for harmonizing functional MRI (fMRI) data collected from the Autism Brain Imaging Data Exchange II. After frequency-domain and regional homogeneity analyses, two modalities, including amplitude of low frequency fluctuation (ALFF) and regional homogeneity (ReHo), were used to validate our method. The results indicate that DP-based ICA denoising method removes unwanted site effects for both two fMRI modalities, with increases in the significance of the associations between non-imaging variables (age, sex, etc.) and fMRI measures. In conclusion, our DP method can be applied to fMRI data in multi-site studies, enabling more accurate and reliable neuroimaging research findings.

摘要

现代神经影像学研究经常合并来自多个站点的磁共振成像(MRI)数据。规模更大、更加多样化的参与者群体可以提高统计功效,增强神经影像学研究的可靠性和可重复性,并获得更能代表普通人群的研究结果。然而,扫描仪的站点差异所导致的测量偏差在汇总来自不同站点收集的数据时构成了障碍。站点效应的存在可能掩盖生物学效应并导致虚假的研究结果。我们最近提出了一种强大的去噪策略,该策略基于独立成分分析(ICA)实施双投影(DP)理论,以从汇总数据中去除与站点相关的效应,并展示了该方法在模拟数据和结构MRI数据上的应用。本研究调查了我们基于DP的ICA去噪方法在协调从自闭症脑成像数据交换II中收集的功能MRI(fMRI)数据方面的应用。经过频域和区域同质性分析后,使用了两种模态,包括低频波动幅度(ALFF)和区域同质性(ReHo),来验证我们的方法。结果表明,基于DP的ICA去噪方法消除了两种fMRI模态中不需要的站点效应,同时非成像变量(年龄、性别等)与fMRI测量之间关联的显著性增加。总之,我们的DP方法可应用于多站点研究中的fMRI数据,从而实现更准确、可靠的神经影像学研究结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b5/10401882/f3da574a1646/fnins-17-1225606-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验