Dadar Mahsa, Zhernovaia Maryna, Mahmoud Sawsan, Camicioli Richard, Maranzano Josefina, Duchesne Simon
Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.
Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.
Front Neuroimaging. 2022 Aug 26;1:940849. doi: 10.3389/fnimg.2022.940849. eCollection 2022.
Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented by expert radiologists and neurologists, usually from susceptibility-contrast MRI. The latter is hard to harmonize across scanners, while manual segmentation is laborious, time-consuming, and subject to interrater and intrarater variability. Automated techniques so far have shown high accuracy at a neighborhood ("patch") level at the expense of a high number of false positive voxel-wise lesions. We aimed to develop an automated, more precise microbleed segmentation tool that can use standardizable MRI contrasts.
We first trained a ResNet50 network on another MRI segmentation task (cerebrospinal fluid vs. background segmentation) using T1-weighted, T2-weighted, and T2 MRIs. We then used transfer learning to train the network for the detection of microbleeds with the same contrasts. As a final step, we employed a combination of morphological operators and rules at the local lesion level to remove false positives. Manual segmentation of microbleeds from 78 participants was used to train and validate the system. We assessed the impact of patch size, freezing weights of the initial layers, mini-batch size, learning rate, and data augmentation on the performance of the Microbleed ResNet50 network.
The proposed method achieved high performance, with a patch-level sensitivity, specificity, and accuracy of 99.57, 99.16, and 99.93%, respectively. At a per lesion level, sensitivity, precision, and Dice similarity index values were 89.1, 20.1, and 0.28% for cortical GM; 100, 100, and 1.0% for deep GM; and 91.1, 44.3, and 0.58% for WM, respectively.
The proposed microbleed segmentation method is more suitable for the automated detection of microbleeds with high sensitivity.
脑微出血是发生在脑灰质和白质区域的小血管周围出血。微出血是脑血管病变的一个标志,与认知能力下降和痴呆风险增加有关。微出血可由专业放射科医生和神经科医生识别并手动分割,通常基于磁敏感对比MRI。后者在不同扫描仪之间难以统一,而手动分割费力、耗时,且存在评分者间和评分者内的差异。到目前为止,自动化技术在邻域(“补丁”)级别显示出高精度,但代价是体素级病变的假阳性数量较多。我们旨在开发一种能够使用标准化MRI对比的自动化、更精确的微出血分割工具。
我们首先使用T1加权、T2加权和T2* MRI在另一项MRI分割任务(脑脊液与背景分割)上训练ResNet50网络。然后,我们使用迁移学习以相同的对比训练该网络用于检测微出血。作为最后一步,我们在局部病变级别采用形态学算子和规则的组合来去除假阳性。来自78名参与者的微出血手动分割用于训练和验证该系统。我们评估了补丁大小、初始层权重冻结、小批量大小、学习率和数据增强对微出血ResNet50网络性能的影响。
所提出的方法具有高性能,补丁级别的灵敏度、特异性和准确率分别为99.57%、99.16%和99.93%。在每个病变级别,皮质灰质的灵敏度、精确率和骰子相似性指数值分别为89.1%、20.1%和0.28%;深部灰质为100%、100%和1.0%;白质为91.1%、44.3%和0.58%。
所提出的微出血分割方法更适合于高灵敏度的微出血自动检测。