文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用知识蒸馏框架在磁共振图像上自动检测脑微出血

Automated detection of cerebral microbleeds on MR images using knowledge distillation framework.

作者信息

Sundaresan Vaanathi, Arthofer Christoph, Zamboni Giovanna, Murchison Andrew G, Dineen Robert A, Rothwell Peter M, Auer Dorothee P, Wang Chaoyue, Miller Karla L, Tendler Benjamin C, Alfaro-Almagro Fidel, Sotiropoulos Stamatios N, Sprigg Nikola, Griffanti Ludovica, Jenkinson Mark

机构信息

Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, Karnataka, India.

Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.

出版信息

Front Neuroinform. 2023 Jul 10;17:1204186. doi: 10.3389/fninf.2023.1204186. eCollection 2023.


DOI:10.3389/fninf.2023.1204186
PMID:37492242
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10363739/
Abstract

INTRODUCTION: Cerebral microbleeds (CMBs) are associated with white matter damage, and various neurodegenerative and cerebrovascular diseases. CMBs occur as small, circular hypointense lesions on T2*-weighted gradient recalled echo (GRE) and susceptibility-weighted imaging (SWI) images, and hyperintense on quantitative susceptibility mapping (QSM) images due to their paramagnetic nature. Accurate automated detection of CMBs would help to determine quantitative imaging biomarkers (e.g., CMB count) on large datasets. In this work, we propose a fully automated, deep learning-based, 3-step algorithm, using structural and anatomical properties of CMBs from any single input image modality (e.g., GRE/SWI/QSM) for their accurate detections. METHODS: In our method, the first step consists of an initial candidate detection step that detects CMBs with high sensitivity. In the second step, candidate discrimination step is performed using a knowledge distillation framework, with a multi-tasking teacher network that guides the student network to classify CMB and non-CMB instances in an offline manner. Finally, a morphological clean-up step further reduces false positives using anatomical constraints. We used four datasets consisting of different modalities specified above, acquired using various protocols and with a variety of pathological and demographic characteristics. RESULTS: On cross-validation within datasets, our method achieved a cluster-wise true positive rate (TPR) of over 90% with an average of <2 false positives per subject. The knowledge distillation framework improves the cluster-wise TPR of the student model by 15%. Our method is flexible in terms of the input modality and provides comparable cluster-wise TPR and better cluster-wise precision compared to existing state-of-the-art methods. When evaluating across different datasets, our method showed good generalizability with a cluster-wise TPR >80 % with different modalities. The python implementation of the proposed method is openly available.

摘要

引言:脑微出血(CMB)与白质损伤以及各种神经退行性和脑血管疾病相关。在T2 *加权梯度回波(GRE)和磁敏感加权成像(SWI)图像上,CMB表现为小的圆形低信号病变,由于其顺磁性性质,在定量磁敏感图谱(QSM)图像上为高信号。准确自动检测CMB有助于在大型数据集中确定定量成像生物标志物(例如,CMB计数)。在这项工作中,我们提出了一种基于深度学习的全自动三步算法,利用来自任何单一输入图像模态(例如,GRE/SWI/QSM)的CMB的结构和解剖特性进行准确检测。 方法:在我们的方法中,第一步包括一个初始候选检测步骤,该步骤以高灵敏度检测CMB。第二步是候选判别步骤,使用知识蒸馏框架,通过一个多任务教师网络以离线方式指导学生网络对CMB和非CMB实例进行分类。最后,一个形态学清理步骤利用解剖学约束进一步减少假阳性。我们使用了四个数据集,这些数据集由上述不同模态组成,采用各种协议采集,具有各种病理和人口统计学特征。 结果:在数据集内的交叉验证中,我们的方法实现了超过90%的聚类真阳性率(TPR),平均每个受试者<2个假阳性。知识蒸馏框架将学生模型的聚类TPR提高了15%。我们的方法在输入模态方面具有灵活性,与现有的最先进方法相比,提供了相当的聚类TPR和更好的聚类精度。在跨不同数据集评估时,我们的方法表现出良好的通用性,不同模态下的聚类TPR>80%。所提出方法的Python实现是公开可用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/408af6150356/fninf-17-1204186-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/eca2e114e88f/fninf-17-1204186-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/85d6f93ed031/fninf-17-1204186-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/80abc900764e/fninf-17-1204186-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/b51712fad26c/fninf-17-1204186-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/bc4769bd69ec/fninf-17-1204186-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/4173c432bc69/fninf-17-1204186-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/79ee8943df34/fninf-17-1204186-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/b5cfdc44f0bd/fninf-17-1204186-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/059bb8fcffdd/fninf-17-1204186-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/ed0ea27f10d5/fninf-17-1204186-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/408af6150356/fninf-17-1204186-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/eca2e114e88f/fninf-17-1204186-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/85d6f93ed031/fninf-17-1204186-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/80abc900764e/fninf-17-1204186-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/b51712fad26c/fninf-17-1204186-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/bc4769bd69ec/fninf-17-1204186-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/4173c432bc69/fninf-17-1204186-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/79ee8943df34/fninf-17-1204186-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/b5cfdc44f0bd/fninf-17-1204186-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/059bb8fcffdd/fninf-17-1204186-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/ed0ea27f10d5/fninf-17-1204186-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a978/10363739/408af6150356/fninf-17-1204186-g0011.jpg

相似文献

[1]
Automated detection of cerebral microbleeds on MR images using knowledge distillation framework.

Front Neuroinform. 2023-7-10

[2]
Automated Detection of Candidate Subjects With Cerebral Microbleeds Using Machine Learning.

Front Neuroinform. 2022-1-20

[3]
Deep-Learning-Based MRI Microbleeds Detection for Cerebral Small Vessel Disease on Quantitative Susceptibility Mapping.

J Magn Reson Imaging. 2024-9

[4]
Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach.

Neuroimage Clin. 2020

[5]
CMB-HUNT: Automatic detection of cerebral microbleeds using a deep neural network.

Comput Biol Med. 2022-12

[6]
Enhanced Reader Confidence and Differentiation of Calcification from Cerebral Microbleed Diagnosis Using QSM Relative to SWI.

Clin Neuroradiol. 2024-12-17

[7]
Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds.

Stroke. 2013-8-6

[8]
Toward automated detection of microbleeds with anatomical scale localization using deep learning.

Med Image Anal. 2025-4

[9]
Clinical Performance of Quantitative Susceptibility Mapping in Cerebral Microbleed Detection Relative to 2D GRE.

Clin Neuroradiol. 2025-5-23

[10]
Automated Detection of Cerebral Microbleeds on Two-dimensional Gradient-recalled Echo T2* Weighted Images Using a Morphology Filter Bank and Convolutional Neural Network.

Magn Reson Med Sci. 2025-4-1

引用本文的文献

[1]
A robust deep learning framework for cerebral microbleeds recognition in GRE and SWI MRI.

Neuroimage Clin. 2025-8-27

[2]
Automated characterisation of cerebral microbleeds using their size and spatial distribution on brain MRI.

Eur Radiol Exp. 2025-1-13

[3]
SHIVA-CMB: a deep-learning-based robust cerebral microbleed segmentation tool trained on multi-source T2*GRE- and susceptibility-weighted MRI.

Sci Rep. 2024-12-28

[4]
Enhancement and evaluation for deep learning-based classification of volumetric neuroimaging with 3D-to-2D knowledge distillation.

Sci Rep. 2024-11-28

[5]
Deep learning-assisted IoMT framework for cerebral microbleed detection.

Heliyon. 2023-11-25

本文引用的文献

[1]
Phenotypic and genetic associations of quantitative magnetic susceptibility in UK Biobank brain imaging.

Nat Neurosci. 2022-6

[2]
Effect of Tranexamic Acid Administration on Remote Cerebral Ischemic Lesions in Acute Spontaneous Intracerebral Hemorrhage: A Substudy of a Randomized Clinical Trial.

JAMA Neurol. 2022-5-1

[3]
Automated Detection of Candidate Subjects With Cerebral Microbleeds Using Machine Learning.

Front Neuroinform. 2022-1-20

[4]
Prevalence and Risk Factors of Cerebral Microbleeds: Analysis From the UK Biobank.

Neurology. 2021-10-11

[5]
DEEPMIR: a deep neural network for differential detection of cerebral microbleeds and iron deposits in MRI.

Sci Rep. 2021-7-8

[6]
Automated detection of cerebral microbleeds on T2*-weighted MRI.

Sci Rep. 2021-2-17

[7]
A Two Cascaded Network Integrating Regional-based YOLO and 3D-CNN for Cerebral Microbleeds Detection.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

[8]
Cerebral Micro-Bleeding Detection Based on Densely Connected Neural Network.

Front Neurosci. 2019-5-17

[9]
Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning.

Neuroimage. 2019-5-20

[10]
Toward Automatic Detection of Radiation-Induced Cerebral Microbleeds Using a 3D Deep Residual Network.

J Digit Imaging. 2019-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索