文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A robust deep learning framework for cerebral microbleeds recognition in GRE and SWI MRI.

作者信息

Hassanzadeh Tahereh, Sachdev Sonal, Wen Wei, Sachdev Perminder S, Sowmya Arcot

机构信息

School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

St Vincent's Hospital, Medical Imaging Department, Sydney, Australia.

出版信息

Neuroimage Clin. 2025 Aug 27;48:103873. doi: 10.1016/j.nicl.2025.103873.


DOI:10.1016/j.nicl.2025.103873
PMID:40886589
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12410576/
Abstract

Cerebral microbleeds (CMB) are small hypointense lesions visible on gradient echo (GRE) or susceptibility-weighted (SWI) MRI, serving as critical biomarkers for various cerebrovascular and neurological conditions. Accurate quantification of CMB is essential, as their number correlates with the severity of conditions such as small vessel disease, stroke risk and cognitive decline. Current detection methods depend on manual inspection, which is time-consuming and prone to variability. Automated detection using deep learning presents a transformative solution but faces challenges due to the heterogeneous appearance of CMB, high false-positive rates, and similarity to other artefacts. This study investigates the application of deep learning techniques to public (ADNI and AIBL) and private datasets (OATS and MAS), leveraging GRE and SWI MRI modalities to enhance CMB detection accuracy, reduce false positives, and ensure robustness in both clinical and normal cases (i.e., scans without cerebral microbleeds). A 3D convolutional neural network (CNN) was developed for automated detection, complemented by a You Only Look Once (YOLO)-based approach to address false positive cases in more complex scenarios. The pipeline incorporates extensive preprocessing and validation, demonstrating robust performance across a diverse range of datasets. The proposed method achieves remarkable performance across four datasets, ADNI: Balanced accuracy: 0.953, AUC: 0.955, Precision: 0.954, Sensitivity: 0.920, F1-score: 0.930, AIBL: Balanced accuracy: 0.968, AUC: 0.956, Precision: 0.956, Sensitivity: 0.938, F1-score: 0.946, MAS: Balanced accuracy: 0.889, AUC: 0.889, Precision: 0.948, Sensitivity: 0.779, F1-score: 0.851, and OATS dataset: Balanced accuracy: 0.93, AUC: 0.930, Precision: 0.949, Sensitivity: 0.862, F1-score: 0.900. These results highlight the potential of deep learning models to improve early diagnosis and support treatment planning for conditions associated with CMB.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e232/12410576/59a571830884/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e232/12410576/75a2eae1ff7e/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e232/12410576/c1f45bb5f6bf/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e232/12410576/f3aa4b683ea1/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e232/12410576/eb238694f5e5/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e232/12410576/59a571830884/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e232/12410576/75a2eae1ff7e/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e232/12410576/c1f45bb5f6bf/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e232/12410576/f3aa4b683ea1/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e232/12410576/eb238694f5e5/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e232/12410576/59a571830884/gr5.jpg

相似文献

[1]
A robust deep learning framework for cerebral microbleeds recognition in GRE and SWI MRI.

Neuroimage Clin. 2025-8-27

[2]
MarkVCID cerebral small vessel consortium: II. Neuroimaging protocols.

Alzheimers Dement. 2021-4

[3]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[4]
Deep Learning for the Early Detection of Invasive Ductal Carcinoma in Histopathological Images: Convolutional Neural Network Approach With Transfer Learning.

JMIR Form Res. 2025-8-21

[5]
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.

J Prev Alzheimers Dis. 2025-5

[6]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[7]
Integrated neural network framework for multi-object detection and recognition using UAV imagery.

Front Neurorobot. 2025-7-30

[8]
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.

Alzheimers Dement. 2021-4

[9]
Automatic Detection and Classification of Cerebral Microbleeds Using 3D CNN.

J Image Graph. 2025

[10]
Are Artificial Intelligence Models Reliable for Clinical Application in Pediatric Fracture Detection on Radiographs? A Systematic Review and Meta-analysis.

Clin Orthop Relat Res. 2025-8-20

本文引用的文献

[1]
Automatic cerebral microbleeds detection from MR images via multi-channel and multi-scale CNNs.

Comput Biol Med. 2025-5

[2]
Automated characterisation of cerebral microbleeds using their size and spatial distribution on brain MRI.

Eur Radiol Exp. 2025-1-13

[3]
SHIVA-CMB: a deep-learning-based robust cerebral microbleed segmentation tool trained on multi-source T2*GRE- and susceptibility-weighted MRI.

Sci Rep. 2024-12-28

[4]
Toward automated detection of microbleeds with anatomical scale localization using deep learning.

Med Image Anal. 2025-4

[5]
A Novel Detection and Classification Framework for Diagnosing of Cerebral Microbleeds Using Transformer and Language.

Bioengineering (Basel). 2024-9-30

[6]
Automated Detection of Cerebral Microbleeds on Two-dimensional Gradient-recalled Echo T2* Weighted Images Using a Morphology Filter Bank and Convolutional Neural Network.

Magn Reson Med Sci. 2025-4-1

[7]
Deep learning-assisted IoMT framework for cerebral microbleed detection.

Heliyon. 2023-11-25

[8]
Naïve Bayes classifier assisted automated detection of cerebral microbleeds in susceptibility-weighted imaging brain images.

Biochem Cell Biol. 2023-12-1

[9]
Using transfer learning for automated microbleed segmentation.

Front Neuroimaging. 2022-8-26

[10]
Automated detection of cerebral microbleeds on MR images using knowledge distillation framework.

Front Neuroinform. 2023-7-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索