Suppr超能文献

基于导管前变量预测对比剂诱导肾病的适用机器学习模型。

Applicable Machine Learning Model for Predicting Contrast-induced Nephropathy Based on Pre-catheterization Variables.

机构信息

Department of Nephrology, Ajou University School of Medicine, Korea.

Department of Biomedical Informatics, Ajou University School of Medicine, Korea.

出版信息

Intern Med. 2024 Mar 15;63(6):773-780. doi: 10.2169/internalmedicine.1459-22. Epub 2023 Aug 9.

Abstract

Objective Contrast agents used for radiological examinations are an important cause of acute kidney injury (AKI). We developed and validated a machine learning and clinical scoring prediction model to stratify the risk of contrast-induced nephropathy, considering the limitations of current classical and machine learning models. Methods This retrospective study included 38,481 percutaneous coronary intervention cases from 23,703 patients in a tertiary hospital. We divided the cases into development and internal test sets (8:2). Using the development set, we trained a gradient boosting machine prediction model (complex model). We then developed a simple model using seven variables based on variable importance. We validated the performance of the models using an internal test set and tested them externally in two other hospitals. Results The complex model had the best area under the receiver operating characteristic (AUROC) curve at 0.885 [95% confidence interval (CI) 0.876-0.894] in the internal test set and 0.837 (95% CI 0.819-0.854) and 0.850 (95% CI 0.781-0.918) in two different external validation sets. The simple model showed an AUROC of 0.795 (95% CI 0.781-0.808) in the internal test set and 0.766 (95% CI 0.744-0.789) and 0.782 (95% CI 0.687-0.877) in the two different external validation sets. This was higher than the value in the well-known scoring system (Mehran criteria, AUROC=0.67). The seven precatheterization variables selected for the simple model were age, known chronic kidney disease, hematocrit, troponin I, blood urea nitrogen, base excess, and N-terminal pro-brain natriuretic peptide. The simple model is available at http://52.78.230.235:8081/Conclusions We developed an AKI prediction machine learning model with reliable performance. This can aid in bedside clinical decision making.

摘要

目的

用于影像学检查的造影剂是急性肾损伤(AKI)的一个重要原因。我们开发并验证了一种机器学习和临床评分预测模型,以分层考虑目前经典和机器学习模型的局限性,预测造影剂肾病的风险。

方法

本回顾性研究纳入了一家三级医院 23703 名患者的 38481 例经皮冠状动脉介入治疗病例。我们将病例分为开发和内部测试集(8:2)。使用开发集,我们训练了一个梯度提升机预测模型(复杂模型)。然后,我们基于变量重要性使用七个变量开发了一个简单模型。我们使用内部测试集验证了模型的性能,并在另外两家医院进行了外部测试。

结果

复杂模型在内部测试集的接收者操作特征(AUROC)曲线下面积最佳,为 0.885 [95%置信区间(CI)0.876-0.894],在两个不同的外部验证集中分别为 0.837(95% CI 0.819-0.854)和 0.850(95% CI 0.781-0.918)。简单模型在内部测试集的 AUROC 为 0.795 [95% CI 0.781-0.808],在两个不同的外部验证集中分别为 0.766 [95% CI 0.744-0.789]和 0.782 [95% CI 0.687-0.877],均高于著名的评分系统(Mehran 标准,AUROC=0.67)。简单模型选择的七个介入前变量为年龄、已知慢性肾脏病、红细胞压积、肌钙蛋白 I、血尿素氮、碱剩余和 N 端脑钠肽前体。简单模型可在 http://52.78.230.235:8081/Conclusions 获得。

结论

我们开发了一种具有可靠性能的 AKI 预测机器学习模型。这有助于床边临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4867/11008999/9ddaf6eb9879/1349-7235-63-0773-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验