Suppr超能文献

传染病的多源动态集成预测及其在新冠肺炎病例中的应用

Multi-source dynamic ensemble prediction of infectious disease and application in COVID-19 case.

作者信息

Huang Jianping, Zhao Yingjie, Yan Wei, Lian Xinbo, Wang Rui, Chen Bin, Chen Siyu

机构信息

Collaborative Innovation Centre for Western Ecological Safety (CIWES), College of Atmospheric Sciences, Lanzhou University, Lanzhou, China.

College of Atmospheric Sciences, Lanzhou University, Lanzhou, China.

出版信息

J Thorac Dis. 2023 Jul 31;15(7):4040-4052. doi: 10.21037/jtd-23-234. Epub 2023 Jul 6.

Abstract

BACKGROUND

The development of an epidemic always exhibits multiwave oscillation owing to various anthropogenic sources of transmission. Particularly in populated areas, the large-scaled human mobility led to the transmission of the virus faster and more complex. The accurate prediction of the spread of infectious diseases remains a problem. To solve this problem, we propose a new method called the multi-source dynamic ensemble prediction (MDEP) method that incorporates a modified susceptible-exposed-infected-removed (SEIR) model to improve the accuracy of the prediction result.

METHODS

The modified SEIR model is based on the compartment model, which is suitable for local-scale and confined spaces, where human mobility on a large scale is not considered. Moreover, compartmental models cannot be used to predict multiwave epidemics. The proposed MDEP method can remedy defects in the compartment model. In this study, multi-source prediction was made on the development of coronavirus disease 2019 (COVID-19) and dynamically assembled to obtain the final integrated result. We used the real epidemic data of COVID-19 in three cities in China: Beijing, Lanzhou, and Beihai. Epidemiological data were collected from 17 April, 2022 to 12 August, 2022.

RESULTS

Compared to the one-wave modified SEIR model, the MDEP method can depict the multiwave development of COVID-19. The MDEP method was applied to predict the number of cumulative cases of recent COVID-19 outbreaks in the aforementioned cities in China. The average accuracy rates in Beijing, Lanzhou, and Beihai were 89.15%, 91.74%, and 94.97%, respectively.

CONCLUSIONS

The MDEP method improved the prediction accuracy of COVID-19. With further application to other infectious diseases, the MDEP method will provide accurate predictions of infectious diseases and aid governments make appropriate directives.

摘要

背景

由于各种人为传播源,疫情的发展总是呈现多波振荡。特别是在人口密集地区,大规模的人员流动导致病毒传播更快、更复杂。准确预测传染病的传播仍然是一个问题。为了解决这个问题,我们提出了一种新的方法,称为多源动态集成预测(MDEP)方法,该方法结合了改进的易感-暴露-感染-康复(SEIR)模型,以提高预测结果的准确性。

方法

改进的SEIR模型基于 compartment 模型,适用于局部尺度和受限空间,其中不考虑大规模的人员流动。此外,compartment 模型不能用于预测多波疫情。所提出的MDEP方法可以弥补 compartment 模型的缺陷。在本研究中,对2019冠状病毒病(COVID-19)的发展进行了多源预测,并动态组装以获得最终的综合结果。我们使用了中国三个城市——北京、兰州和北海的COVID-19实际疫情数据。收集了2022年4月17日至2022年8月12日的流行病学数据。

结果

与单波改进SEIR模型相比,MDEP方法可以描述COVID-19的多波发展。MDEP方法被应用于预测中国上述城市近期COVID-19疫情的累计病例数。北京、兰州和北海的平均准确率分别为89.15%、91.74%和94.97%。

结论

MDEP方法提高了COVID-19的预测准确性。随着进一步应用于其他传染病,MDEP方法将为传染病提供准确预测,并帮助政府做出适当的指示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e861/10407500/f99bcbfd7051/jtd-15-07-4040-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验