Huang Zhi-Ping, Chen You-Xian, Huang Zi-Heng, Lin Wen-Wei, Mao Yu, Lin Li-Mei, Yao Li-Quan, Li Hu, Cai Li-Ping, Chen Gui-Lin
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China.
Heliyon. 2023 Jul 28;9(8):e18776. doi: 10.1016/j.heliyon.2023.e18776. eCollection 2023 Aug.
Recently GeSe has developed as a promising light harvesting material by enjoying to its optical and electrical features as well as earth-abundant and low-toxic constituent elements. Nevertheless, the power conversion efficiency of GeSe-based solar cells yet lags far behind the Shockley-Queisser limit. In this work, we systematically designed, simulated and analyzed the highly efficient GeSe thin-film solar cells by SCAPS-1D. The influence of thickness and defect density of light harvest material, GeSe/CdS interface defect density, electron transport layer (ETL), electrode work function and hole transport layer (HTL) on the device output are carefully analyzed. By optimizing the parameters (thickness, defect, concentration, work function, ETL and HTL), an impressive PCE of 17.98% is delivered along with of 37.11 mA/cm, FF of 75.53%, of 0.61 V. This work offers theoretical guidance for the design of highly efficient GeSe thin film solar cells.
近年来,由于具有光学和电学特性以及地球上储量丰富且低毒的组成元素,锗硒已发展成为一种很有前景的光捕获材料。然而,基于锗硒的太阳能电池的功率转换效率仍远远落后于肖克利-奎塞尔极限。在这项工作中,我们通过SCAPS-1D系统地设计、模拟和分析了高效的锗硒薄膜太阳能电池。仔细分析了光捕获材料锗硒的厚度和缺陷密度、锗硒/硫化镉界面缺陷密度、电子传输层(ETL)、电极功函数和空穴传输层(HTL)对器件输出的影响。通过优化参数(厚度、缺陷、浓度、功函数、ETL和HTL),实现了令人印象深刻的17.98%的光电转换效率,以及37.11 mA/cm的短路电流密度、75.53%的填充因子、0.61 V的开路电压。这项工作为高效锗硒薄膜太阳能电池的设计提供了理论指导。