FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
Neuroimage. 2022 Nov 15;262:119535. doi: 10.1016/j.neuroimage.2022.119535. Epub 2022 Aug 2.
To estimate microstructure-related parameters from diffusion MRI data, biophysical models make strong, simplifying assumptions about the underlying tissue. The extent to which many of these assumptions are valid remains an open research question. This study was inspired by the disparity between the estimated intra-axonal axial diffusivity from literature and that typically assumed by the Neurite Orientation Dispersion and Density Imaging (NODDI) model (d=1.7μm/ms). We first demonstrate how changing the assumed axial diffusivity results in considerably different NODDI parameter estimates. Second, we illustrate the ability to estimate axial diffusivity as a free parameter of the model using high b-value data and an adapted NODDI framework. Using both simulated and in vivo data we investigate the impact of fitting to either real-valued or magnitude data, with Gaussian and Rician noise characteristics respectively, and what happens if we get the noise assumptions wrong in this high b-value and thus low SNR regime. Our results from real-valued human data estimate intra-axonal axial diffusivities of ∼2-2.5μm/ms, in line with current literature. Crucially, our results demonstrate the importance of accounting for both a rectified noise floor and/or a signal offset to avoid biased parameter estimates when dealing with low SNR data.
为了从扩散 MRI 数据中估计与微观结构相关的参数,生物物理模型对基础组织做出了强有力的简化假设。这些假设中有许多在多大程度上是有效的,仍然是一个悬而未决的研究问题。这项研究的灵感来自文献中估计的轴内轴向扩散率与神经丝取向分散和密度成像(NODDI)模型中通常假设的扩散率(d=1.7μm/ms)之间的差异。我们首先展示了改变假设的轴向扩散率如何导致 NODDI 参数估计有很大的不同。其次,我们说明了如何使用高 b 值数据和经过改编的 NODDI 框架,将轴向扩散率作为模型的自由参数进行估计。我们使用模拟和体内数据来研究在拟合真实值或幅度数据时的影响,分别具有高斯和瑞利噪声特性,如果我们在高 b 值和低 SNR 区域中错误地假设了噪声,会发生什么情况。我们从真实的人体数据中得到的结果估计出的轴内轴向扩散率约为 2-2.5μm/ms,与当前文献一致。至关重要的是,我们的结果表明,在处理低 SNR 数据时,为了避免参数估计有偏差,必须考虑到校正后的噪声底和/或信号偏移。