Suppr超能文献

机器学习揭示了象征主义、情感和想象力是西方艺术画作创造力评价的主要预测因素。

Machine learning revealed symbolism, emotionality, and imaginativeness as primary predictors of creativity evaluations of western art paintings.

机构信息

Vienna Cognitive Science Hub, University of Vienna, 1010, Vienna, Austria.

Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, 6525 GC, Nijmegen, The Netherlands.

出版信息

Sci Rep. 2023 Aug 10;13(1):12966. doi: 10.1038/s41598-023-39865-1.

Abstract

Creativity is a compelling yet elusive phenomenon, especially when manifested in visual art, where its evaluation is often a subjective and complex process. Understanding how individuals judge creativity in visual art is a particularly intriguing question. Conventional linear approaches often fail to capture the intricate nature of human behavior underlying such judgments. Therefore, in this study, we employed interpretable machine learning to probe complex associations between 17 subjective art-attributes and creativity judgments across a diverse range of artworks. A cohort of 78 non-art expert participants assessed 54 artworks varying in styles and motifs. The applied Random Forests regressor models accounted for 30% of the variability in creativity judgments given our set of art-attributes. Our analyses revealed symbolism, emotionality, and imaginativeness as the primary attributes influencing creativity judgments. Abstractness, valence, and complexity also had an impact, albeit to a lesser degree. Notably, we observed non-linearity in the relationship between art-attribute scores and creativity judgments, indicating that changes in art-attributes did not consistently correspond to changes in creativity judgments. Employing statistical learning, this investigation presents the first attribute-integrating quantitative model of factors that contribute to creativity judgments in visual art among novice raters. Our research represents a significant stride forward building the groundwork for first causal models for future investigations in art and creativity research and offering implications for diverse practical applications. Beyond enhancing comprehension of the intricate interplay and specificity of attributes used in evaluating creativity, this work introduces machine learning as an innovative approach in the field of subjective judgment.

摘要

创造力是一种引人入胜但难以捉摸的现象,尤其是在视觉艺术中,其评估往往是一个主观而复杂的过程。理解个体如何判断视觉艺术中的创造力是一个特别有趣的问题。传统的线性方法往往无法捕捉到这种判断背后复杂的人类行为本质。因此,在这项研究中,我们采用了可解释的机器学习来探究 17 种主观艺术属性与跨多种艺术作品的创造力判断之间的复杂关联。一组 78 名非艺术专业的参与者评估了 54 件风格和主题各异的艺术作品。所应用的随机森林回归模型解释了我们的艺术属性集给定的创造力判断中 30%的可变性。我们的分析表明,象征性、情感性和想象力是影响创造力判断的主要属性。抽象性、正值和复杂性也有影响,尽管程度较小。值得注意的是,我们观察到艺术属性得分与创造力判断之间的关系是非线性的,这表明艺术属性的变化并不总是与创造力判断的变化相对应。通过统计学习,这项研究提出了一个用于初级评估者判断视觉艺术中创造力的因素的属性综合定量模型,这在该领域是首次。我们的研究为未来艺术和创造力研究中的因果模型奠定了基础,并为各种实际应用提供了启示,这是一个重大的进展。除了增强对评估创造力时使用的属性的复杂相互作用和特异性的理解外,这项工作还将机器学习引入了主观判断领域,这是一种创新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489a/10415252/f6940079a279/41598_2023_39865_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验