Azzaroni Omar, Piccinini Esteban, Fenoy Gonzalo, Marmisollé Waldemar, Ariga Katsuhiko
Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina.
Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
Nanotechnology. 2023 Sep 4;34(47). doi: 10.1088/1361-6528/acef26.
The layer-by-layer (LbL) technique has been proven to be one of the most versatile approaches in order to fabricate functional nanofilms. The use of simple and inexpensive procedures as well as the possibility to incorporate a very wide range of materials through different interactions have driven its application in a wide range of fields. On the other hand, field-effect transistors (FETs) are certainly among the most important elements in electronics. The ability to modulate the flowing current between a source and a drain electrode via the voltage applied to the gate electrode endow these devices to switch or amplify electronic signals, being vital in all of our everyday electronic devices. In this topical review, we highlight different research efforts to engineer field-effect transistors using the LbL assembly approach. We firstly discuss on the engineering of the channel material of transistors via the LbL technique. Next, the deposition of dielectric materials through this approach is reviewed, allowing the development of high-performance electronic components. Finally, the application of the LbL approach to fabricate FETs-based biosensing devices is also discussed, as well as the improvement of the transistor's interfacial sensitivity by the engineering of the semiconductor with polyelectrolyte multilayers.
逐层(LbL)技术已被证明是制备功能纳米薄膜最通用的方法之一。使用简单且廉价的程序,以及通过不同相互作用纳入非常广泛的材料的可能性,推动了其在广泛领域的应用。另一方面,场效应晶体管(FET)无疑是电子学中最重要的元件之一。通过施加到栅电极的电压来调制源电极和漏电极之间的流动电流的能力,使这些器件能够切换或放大电子信号,这在我们所有的日常电子设备中都至关重要。在这篇专题综述中,我们重点介绍了使用LbL组装方法设计场效应晶体管的不同研究工作。我们首先讨论通过LbL技术对晶体管沟道材料的设计。接下来,回顾了通过这种方法沉积介电材料的情况,这有助于开发高性能电子元件。最后,还讨论了LbL方法在制造基于FET的生物传感设备中的应用,以及通过用聚电解质多层膜对半导体进行工程设计来提高晶体管的界面灵敏度。