Hikvision Digital Technology Company Limited, Hangzhou310051, China.
Hikvision Digital Technology Company Limited, Hangzhou310051, China.
Comput Methods Programs Biomed. 2021 Jun;205:106033. doi: 10.1016/j.cmpb.2021.106033. Epub 2021 Mar 16.
Accurate detection of breast masses in mammography images is critical to diagnose early breast cancer, which can greatly improve the patients' survival rate. However, it is still a big challenge due to the heterogeneity of breast masses and the complexity of their surrounding environment. Therefore, how to develop a robust breast mass detection framework in clinical practical applications to improve patient survival is a topic that researchers need to continue to explore.
To address these problems, we propose a one-stage object detection architecture, called Breast Mass Detection Network (BMassDNet), based on anchor-free and feature pyramid which makes the detection of breast masses of different sizes well adapted. We introduce a truncation normalization method and combine it with adaptive histogram equalization to enhance the contrast between the breast mass and the surrounding environment. Meanwhile, to solve the overfitting problem caused by small data size, we propose a natural deformation data augmentation method and mend the train data dynamic updating method based on the data complexity to effectively utilize the limited data. Finally, we use transfer learning to assist the training process and to improve the robustness of the model ulteriorly.
On the INbreast dataset, each image has an average of 0.495 false positives whilst the recall rate is 0.930; On the DDSM dataset, when each image has 0.599 false positives, the recall rate reaches 0.943.
The experimental results on datasets INbreast and DDSM show that the proposed BMassDNet can obtain competitive detection performance over the current top ranked methods.
在乳腺 X 线图像中准确检测乳腺肿块对于早期诊断乳腺癌至关重要,这可以大大提高患者的生存率。然而,由于乳腺肿块的异质性和其周围环境的复杂性,这仍然是一个巨大的挑战。因此,如何开发一种稳健的乳腺肿块检测框架,以提高患者的生存率,是研究人员需要继续探索的课题。
为了解决这些问题,我们提出了一种基于无锚点和特征金字塔的单阶段目标检测架构,称为乳腺肿块检测网络(BMassDNet),使不同大小的乳腺肿块的检测能够很好地适应。我们引入了一种截断归一化方法,并将其与自适应直方图均衡化相结合,以增强乳腺肿块与周围环境之间的对比度。同时,为了解决小数据量引起的过拟合问题,我们提出了一种自然变形数据增强方法,并基于数据复杂度对训练数据动态更新方法进行了修正,以有效地利用有限的数据。最后,我们使用迁移学习来辅助训练过程,进一步提高模型的鲁棒性。
在 INbreast 数据集上,每张图像的平均假阳性率为 0.495,召回率为 0.930;在 DDSM 数据集上,当每张图像的假阳性率为 0.599 时,召回率达到 0.943。
在 INbreast 和 DDSM 数据集上的实验结果表明,所提出的 BMassDNet 可以在当前排名最高的方法中获得具有竞争力的检测性能。