Suppr超能文献

基于 B 型超声图像的可解释深度学习方法对颈动脉粥样硬化斑块进行分层。

Stratification of carotid atheromatous plaque using interpretable deep learning methods on B-mode ultrasound images.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3902-3905. doi: 10.1109/EMBC46164.2021.9630402.

Abstract

Carotid atherosclerosis is the major cause of ischemic stroke resulting in significant rates of mortality and disability annually. Early diagnosis of such cases is of great importance, since it enables clinicians to apply a more effective treatment strategy. This paper introduces an interpretable classification approach of carotid ultrasound images for the risk assessment and stratification of patients with carotid atheromatous plaque. To address the highly imbalanced distribution of patients between the symptomatic and asymptomatic classes (16 vs 58, respectively), an ensemble learning scheme based on a sub-sampling approach was applied along with a two-phase, cost-sensitive strategy of learning, that uses the original and a resampled data set. Convolutional Neural Networks (CNNs) were utilized for building the primary models of the ensemble. A six-layer deep CNN was used to automatically extract features from the images, followed by a classification stage of two fully connected layers. The obtained results (Area Under the ROC Curve (AUC): 73%, sensitivity: 75%, specificity: 70%) indicate that the proposed approach achieved acceptable discrimination performance. Finally, interpretability methods were applied on the model's predictions in order to reveal insights on the model's decision process as well as to enable the identification of novel image biomarkers for the stratification of patients with carotid atheromatous plaque.Clinical Relevance-The integration of interpretability methods with deep learning strategies can facilitate the identification of novel ultrasound image biomarkers for the stratification of patients with carotid atheromatous plaque.

摘要

颈动脉粥样硬化是导致缺血性中风的主要原因,每年都有很高的死亡率和残疾率。因此,早期诊断此类病例非常重要,因为它使临床医生能够采用更有效的治疗策略。本文介绍了一种可解释的颈动脉超声图像分类方法,用于评估和分层颈动脉粥样硬化斑块患者的风险。为了解决症状性和无症状性患者之间高度不平衡的分布情况(分别为 16 例和 58 例),应用了基于抽样方法的集成学习方案,并采用了原始数据和重采样数据集的两阶段、成本敏感学习策略。卷积神经网络(CNN)用于构建集成的主要模型。一个六层深的 CNN 用于从图像中自动提取特征,然后是两个全连接层的分类阶段。获得的结果(ROC 曲线下面积(AUC):73%,敏感性:75%,特异性:70%)表明,所提出的方法实现了可接受的判别性能。最后,应用了可解释性方法来揭示模型决策过程的见解,并能够识别颈动脉粥样硬化斑块患者分层的新的超声图像生物标志物。临床相关性-将可解释性方法与深度学习策略相结合,可以促进识别颈动脉粥样硬化斑块患者分层的新的超声图像生物标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验