Suppr超能文献

用于在嵌入热图的增强框架中进行颈动脉超声斑块组织特征分析以实现中风风险分层的十种快速迁移学习模型

Ten Fast Transfer Learning Models for Carotid Ultrasound Plaque Tissue Characterization in Augmentation Framework Embedded with Heatmaps for Stroke Risk Stratification.

作者信息

Sanagala Skandha S, Nicolaides Andrew, Gupta Suneet K, Koppula Vijaya K, Saba Luca, Agarwal Sushant, Johri Amer M, Kalra Manudeep S, Suri Jasjit S

机构信息

CSE Department, CMR College of Engineering & Technology, Hyderabad 501401, TS, India.

CSE Department, Bennett University, Greater Noida 203206, UP, India.

出版信息

Diagnostics (Basel). 2021 Nov 15;11(11):2109. doi: 10.3390/diagnostics11112109.

Abstract

Only 1-2% of the internal carotid artery asymptomatic plaques are unstable as a result of >80% stenosis. Thus, unnecessary efforts can be saved if these plaques can be characterized and classified into symptomatic and asymptomatic using non-invasive B-mode ultrasound. Earlier plaque tissue characterization (PTC) methods were machine learning (ML)-based, which used hand-crafted features that yielded lower accuracy and unreliability. The proposed study shows the role of transfer learning (TL)-based deep learning models for PTC. As pertained weights were used in the supercomputer framework, we hypothesize that transfer learning (TL) provides improved performance compared with deep learning. We applied 11 kinds of artificial intelligence (AI) models, 10 of them were augmented and optimized using TL approaches-a class of Atheromatic™ 2.0 (AtheroPoint™, Roseville, CA, USA) that consisted of () Visual Geometric Group-16, 19 (VGG16, 19); () Inception V3 (IV3); () DenseNet121, 169; () XceptionNet; () ResNet50; () MobileNet; () AlexNet; () SqueezeNet; and one DL-based () SuriNet-derived from UNet. We benchmark 11 AI models against our earlier deep convolutional neural network (DCNN) model. The best performing TL was MobileNet, with accuracy and area-under-the-curve (AUC) pairs of 96.10 ± 3% and 0.961 ( < 0.0001), respectively. In DL, DCNN was comparable to SuriNet, with an accuracy of 95.66% and 92.7 ± 5.66%, and an AUC of 0.956 ( < 0.0001) and 0.927 ( < 0.0001), respectively. We validated the performance of the AI architectures with established biomarkers such as greyscale median (GSM), fractal dimension (FD), higher-order spectra (HOS), and visual heatmaps. We benchmarked against previously developed Atheromatic™ 1.0 and showed an improvement of %. TL is a powerful AI tool for PTC into symptomatic and asymptomatic plaques.

摘要

由于颈内动脉无症状斑块狭窄程度超过80%时,只有1%-2%是不稳定的。因此,如果能够使用无创B超对这些斑块进行特征分析并分类为有症状和无症状斑块,就可以避免不必要的检查。早期的斑块组织特征分析(PTC)方法基于机器学习(ML),使用人工构建的特征,准确性较低且不可靠。本研究展示了基于迁移学习(TL)的深度学习模型在PTC中的作用。在超级计算机框架中使用相关权重,我们假设迁移学习(TL)与深度学习相比能提供更好的性能。我们应用了11种人工智能(AI)模型,其中10种使用TL方法进行了增强和优化——这是Atheromatic™ 2.0(AtheroPoint™,美国加利福尼亚州罗斯维尔)的一类,包括()视觉几何组-16、19(VGG16、19);()Inception V3(IV3);()DenseNet121、169;()XceptionNet;()ResNet50;()MobileNet;()AlexNet;()SqueezeNet;以及一个基于深度学习的()源自UNet的SuriNet。我们将11种AI模型与我们早期的深度卷积神经网络(DCNN)模型进行了基准测试。表现最佳的TL模型是MobileNet,准确率和曲线下面积(AUC)分别为96.10±3%和0.961(<0.0001)。在深度学习中,DCNN与SuriNet相当,准确率分别为95.66%和92.7±5.66%,AUC分别为0.956(<0.0001)和0.927(<0.0001)。我们用灰度中位数(GSM)、分形维数(FD)、高阶谱(HOS)和视觉热图等既定生物标志物验证了AI架构的性能。我们与之前开发的Atheromatic™ 1.0进行了基准测试,并显示出了%的提升。迁移学习是将PTC分为有症状和无症状斑块的强大AI工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/233d/8622690/7f263c338bf3/diagnostics-11-02109-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验