Suppr超能文献

使用可解释人工智能交叉验证新冠疫情患者死亡率中的社会经济差异。

Using Explainable AI to Cross-Validate Socio-economic Disparities Among Covid-19 Patient Mortality.

作者信息

Shi Li, Rahman Redoan, Melamed Esther, Gwizdka Jacek, Rousseau Justin F, Ding Ying

机构信息

School of Information, University of Texas at Austin, Austin, Texas, USA.

Dell Medical School, University of Texas at Austin, Austin, Texas, USA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:477-486. eCollection 2023.

Abstract

This paper applies eXplainable Artificial Intelligence (XAI) methods to investigate the socioeconomic disparities in COVID-19 patient mortality. An Extreme Gradient Boosting (XGBoost) prediction model is built based on a de-identified Austin area hospital dataset to predict the mortality of COVID-19 patients. We apply two XAI methods, Shapley Additive exPlanations (SHAP) and Locally Interpretable Model Agnostic Explanations (LIME), to compare the global and local interpretation of feature importance. This paper demonstrates the advantages of using XAI which shows the feature importance and decisive capability. Furthermore, we use the XAI methods to cross-validate their interpretations for individual patients. The XAI models reveal that Medicare financial class, older age, and gender have high impact on the mortality prediction. We find that LIME's local interpretation does not show significant differences in feature importance comparing to SHAP, which suggests pattern confirmation. This paper demonstrates the importance of XAI methods in cross-validation of feature attributions.

摘要

本文应用可解释人工智能(XAI)方法来研究新冠肺炎患者死亡率方面的社会经济差异。基于一个经过去识别处理的奥斯汀地区医院数据集构建了一个极端梯度提升(XGBoost)预测模型,以预测新冠肺炎患者的死亡率。我们应用两种XAI方法,即夏普利值附加解释(SHAP)和局部可解释模型无关解释(LIME),来比较特征重要性的全局解释和局部解释。本文展示了使用XAI的优势,它显示了特征重要性和决定性能力。此外,我们使用XAI方法对个体患者的解释进行交叉验证。XAI模型表明,医疗保险财务类别、年龄较大和性别对死亡率预测有很大影响。我们发现,与SHAP相比,LIME的局部解释在特征重要性方面没有显示出显著差异,这表明模式得到了确认。本文证明了XAI方法在特征归因交叉验证中的重要性。

相似文献

1
Using Explainable AI to Cross-Validate Socio-economic Disparities Among Covid-19 Patient Mortality.
AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:477-486. eCollection 2023.
2
Model-agnostic explainable artificial intelligence tools for severity prediction and symptom analysis on Indian COVID-19 data.
Front Artif Intell. 2023 Dec 4;6:1272506. doi: 10.3389/frai.2023.1272506. eCollection 2023.
3
Explainable artificial intelligence model for identifying COVID-19 gene biomarkers.
Comput Biol Med. 2023 Mar;154:106619. doi: 10.1016/j.compbiomed.2023.106619. Epub 2023 Feb 1.
4
7
Face Aging by Explainable Conditional Adversarial Autoencoders.
J Imaging. 2023 May 10;9(5):96. doi: 10.3390/jimaging9050096.
10
CVD22: Explainable artificial intelligence determination of the relationship of troponin to D-Dimer, mortality, and CK-MB in COVID-19 patients.
Comput Methods Programs Biomed. 2023 May;233:107492. doi: 10.1016/j.cmpb.2023.107492. Epub 2023 Mar 18.

引用本文的文献

1
AI ethics for the everyday intensivist.
Crit Care Resusc. 2025 Jun 26;27(2):100115. doi: 10.1016/j.ccrj.2025.100115. eCollection 2025 Jun.

本文引用的文献

1
Predicting the need for mechanical ventilation and mortality in hospitalized COVID-19 patients who received heparin.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1020-1023. doi: 10.1109/EMBC48229.2022.9871261.
3
Using Shapes of COVID-19 Positive Patient-Specific Trajectories for Mortality Prediction.
AMIA Jt Summits Transl Sci Proc. 2022 May 23;2022:130-139. eCollection 2022.
5
Non-contact screening system based for COVID-19 on XGBoost and logistic regression.
Comput Biol Med. 2022 Feb;141:105003. doi: 10.1016/j.compbiomed.2021.105003. Epub 2021 Nov 3.
6
Disparities in COVID-19 Outcomes by Race, Ethnicity, and Socioeconomic Status: A Systematic-Review and Meta-analysis.
JAMA Netw Open. 2021 Nov 1;4(11):e2134147. doi: 10.1001/jamanetworkopen.2021.34147.
7
Estimated Mortality Increases During The COVID-19 Pandemic By Socioeconomic Status, Race, And Ethnicity.
Health Aff (Millwood). 2021 Aug;40(8):1252-1260. doi: 10.1377/hlthaff.2021.00414. Epub 2021 Jul 21.
8
Molecular and Biological Mechanisms Underlying Gender Differences in COVID-19 Severity and Mortality.
Front Immunol. 2021 May 7;12:659339. doi: 10.3389/fimmu.2021.659339. eCollection 2021.
9
Socioeconomic status determines COVID-19 incidence and related mortality in Santiago, Chile.
Science. 2021 May 28;372(6545). doi: 10.1126/science.abg5298. Epub 2021 Apr 27.
10
Explaining machine learning based diagnosis of COVID-19 from routine blood tests with decision trees and criteria graphs.
Comput Biol Med. 2021 May;132:104335. doi: 10.1016/j.compbiomed.2021.104335. Epub 2021 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验