Suppr超能文献

基于磁共振血管壁图像的头颈部血管造影快速血管分割与重建

Rapid vessel segmentation and reconstruction of head and neck angiograms from MR vessel wall images.

作者信息

Zhang Jin, Wang Wen, Dong Jinhua, Yang Xiong, Bai Shuwei, Tian Jiaqi, Li Bo, Li Xiao, Zhang Jianjian, Wu Hangyu, Zeng Xiaoxi, Ye Yongqiang, Ding Shenghao, Wan Jieqing, Wu Ke, Mao Yufei, Li Cheng, Zhang Na, Xu Jianrong, Dai Yongming, Shi Feng, Sun Beibei, Zhou Yan, Zhao Huilin

机构信息

Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

NPJ Digit Med. 2025 Jul 28;8(1):483. doi: 10.1038/s41746-025-01866-x.

Abstract

Three-dimensional magnetic resonance vessel wall imaging (3D MR-VWI) is critical for characterizing cerebrovascular pathologies, yet its clinical adoption is hindered by labor-intensive postprocessing. We developed VWI Assistant, a multi-sequence integrated deep learning platform trained on multicenter data (study cohorts 1981 patients and imaging datasets) to automate artery segmentation and reconstruction. The framework demonstrated robust performance across diverse patient populations, imaging protocols, and scanner manufacturers, achieving 92.9% qualified rate comparable to expert manual delineation. VWI Assistant reduced processing time by over 90% (10-12 min per case) compared to manual methods (p < 0.001) and improved inter-/intra-reader agreement. Real-world deployment (n = 1099 patients) demonstrated rapid clinical adoption, with utilization rates increasing from 10.8% to 100.0% within 12 months. By streamlining 3D MR-VWI workflows, VWI Assistant addresses scalability challenges in vascular imaging, offering a practical tool for routine use and large-scale research, significantly improving workflow efficiency while reducing labor and time costs.

摘要

三维磁共振血管壁成像(3D MR-VWI)对于表征脑血管病变至关重要,但其临床应用受到劳动密集型后处理的阻碍。我们开发了VWI Assistant,这是一个多序列集成深度学习平台,在多中心数据(研究队列包括1981名患者和成像数据集)上进行训练,以实现动脉分割和重建的自动化。该框架在不同患者群体、成像协议和扫描仪制造商中均表现出强大的性能,合格比率达到92.9%,与专家手动描绘相当。与手动方法相比,VWI Assistant将处理时间减少了90%以上(每例10 - 12分钟)(p < 0.001),并提高了不同阅片者之间/阅片者内部的一致性。实际应用(n = 1099名患者)表明其临床应用迅速,利用率在12个月内从10.8%提高到100.0%。通过简化3D MR-VWI工作流程,VWI Assistant解决了血管成像中的可扩展性挑战,为常规使用和大规模研究提供了一个实用工具,显著提高了工作流程效率,同时降低了人力和时间成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109e/12304216/74a93a2567a1/41746_2025_1866_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验