Suppr超能文献

基于免疫相关基因的通路和转录组分析鉴定脓毒性休克的潜在生物标志物。

Identification of Potential Biomarkers of Septic Shock Based on Pathway and Transcriptome Analyses of Immune-Related Genes.

机构信息

Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China.

Department of Critical Care Medicine, HUST Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong 518052, China.

出版信息

Genet Res (Camb). 2023 Aug 5;2023:9991613. doi: 10.1155/2023/9991613. eCollection 2023.

Abstract

Immunoregulation is crucial to septic shock (SS) but has not been clearly explained. Our aim was to explore potential biomarkers for SS by pathway and transcriptional analyses of immune-related genes to improve early detection. GSE57065 and GSE95233 microarray data were used to screen differentially expressed genes (DEGs) in SS. Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses of DEGs were performed, and correlations between immune cell and pathway enrichment scores were analyzed. The predictive value of candidate genes was evaluated by receiver operating characteristic (ROC) curves. GSE66099, GSE4607, and GSE13904 datasets were used for external validation. Blood samples from six patients and six controls were collected for validation by qRT-PCR and western blotting. In total, 550 DEGs in SS were identified; these genes were involved in the immune response, inflammation, and infection. Immune-related pathways and levels of infiltration of CD4 + TCM, CD8 + T cells, and preadipocytes differed between SS cases and controls. Seventeen genes were identified as potential biomarkers of SS (areas under ROC curves >0.9). The downregulation of , , , , and in SS was experimentally confirmed. We identified several immune-related biomarkers in SS that may improve early identification of disease risk.

摘要

免疫调节对感染性休克(SS)至关重要,但尚未得到明确解释。我们的目的是通过对免疫相关基因的通路和转录分析来探索 SS 的潜在生物标志物,以提高早期检测能力。使用 GSE57065 和 GSE95233 微阵列数据筛选 SS 中的差异表达基因(DEG)。对 DEG 进行基因本体论和 KEGG(京都基因与基因组百科全书)通路富集分析,并分析免疫细胞与通路富集评分之间的相关性。通过受试者工作特征(ROC)曲线评估候选基因的预测价值。使用 GSE66099、GSE4607 和 GSE13904 数据集进行外部验证。采集来自 6 名患者和 6 名对照者的血液样本,通过 qRT-PCR 和 Western blot 进行验证。在 SS 中鉴定出 550 个 DEG,这些基因参与免疫反应、炎症和感染。SS 病例与对照组之间的免疫相关通路和 CD4+TCM、CD8+T 细胞和前脂肪细胞浸润水平存在差异。鉴定出 17 个可能作为 SS 生物标志物的基因(ROC 曲线下面积>0.9)。在 SS 中确实观察到下调的 、 、 、 和 。我们在 SS 中鉴定出了一些免疫相关的生物标志物,可能有助于提高疾病风险的早期识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7304/10423089/676ca8d30c13/GR2023-9991613.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验