Suppr超能文献

白光照射下石墨烯-钛酸钡纳米系统促进伤口愈合的过程。

Procedural Promotion of Wound Healing by Graphene-Barium Titanate Nanosystem with White Light Irradiation.

机构信息

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.

出版信息

Int J Nanomedicine. 2023 Aug 7;18:4507-4520. doi: 10.2147/IJN.S408981. eCollection 2023.

Abstract

BACKGROUND

Wound healing is a continuous and complex process that comprises multiple phases including hemostasis, inflammation, multiplication (proliferation) and remodeling. Although a variety of nanomaterials have been developed to control infection and accelerate wound healing, most of them can only promote one phase but not multiple phases, resulting in lower efficient healing. Although various formulations such as nitric oxide releasing wound dressings were developed for dual action, the nanostructure synthesis and the encapsulation process were complex.

MATERIALS AND METHODS

Here, we report on the design of graphene-barium titanate nanosystem to procedural promote the wound healing process. The antibacterial effect was assessed in Gram-negative bacteria () and Gram-positive bacteria (), the cell proliferation and migration experiment was investigated in mouse embryonic fibroblast (NIH-3T3) cells, and the wound healing effect was analyzed in female BALB/c mice with infected skin wound on the back.

RESULTS

Results showed that graphene-barium titanate nanosystem could generate abundant ROS to kill both and . The growth curves, bacterial viability, colony number formation and scanning electron microscopy (SEM) images of and all confirmed the antibacterial effect. Cell Counting Kit-8 (CCK-8) assay displayed that GBT possesses great biocompatibility. EdU assay showed that GBT plus white light irradiation significantly promoted the proliferation and migration of NIH-3T3 cells. Scratch assay found that GBT could achieve a fast scratch closure compared to the control. In vivo wound healing effect indicates that GBT can accelerate wound repair procedure.

CONCLUSION

GBT nanocomposite is capable of programmatically accelerating wound healing through multiple stages, including production of a large amount of ROS after white light exposure to effectively kill and to prevent wound infection and as a scaffold to accelerate fibroblast proliferation and migration to the wound to accelerate wound healing.

摘要

背景

伤口愈合是一个连续且复杂的过程,包含多个阶段,包括止血、炎症、增殖(增生)和重塑。尽管已经开发出多种纳米材料来控制感染和加速伤口愈合,但大多数纳米材料只能促进一个阶段,而不能促进多个阶段,导致愈合效率较低。尽管开发了各种制剂,如释放一氧化氮的伤口敷料,以实现双重作用,但纳米结构的合成和封装过程很复杂。

材料和方法

在这里,我们报告了设计石墨烯-钛酸钡纳米系统以程序性促进伤口愈合过程。评估了其在革兰氏阴性菌()和革兰氏阳性菌()中的抗菌效果,在小鼠胚胎成纤维细胞(NIH-3T3)细胞中进行了细胞增殖和迁移实验,并在背部感染皮肤伤口的雌性 BALB/c 小鼠中分析了伤口愈合效果。

结果

结果表明,石墨烯-钛酸钡纳米系统可以产生丰富的 ROS 来杀死和 。生长曲线、细菌活力、菌落数形成和扫描电子显微镜(SEM)图像均证实了 的抗菌效果。细胞计数试剂盒-8(CCK-8)检测显示 GBT 具有良好的生物相容性。EdU 检测显示,GBT 加白光照射显著促进了 NIH-3T3 细胞的增殖和迁移。划痕实验发现,GBT 能够比对照组更快地实现划痕闭合。体内伤口愈合效果表明,GBT 能够通过多个阶段加速伤口修复过程。

结论

GBT 纳米复合材料能够通过多种阶段程序性加速伤口愈合,包括在暴露于白光后产生大量 ROS 以有效杀死和 以防止伤口感染,以及作为支架加速成纤维细胞增殖和迁移到伤口以加速伤口愈合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96c7/10417647/9b6a06fa012a/IJN-18-4507-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验