Jahnke Kevin, Göpfrich Kerstin
Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.
Department of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany.
Interface Focus. 2023 Aug 11;13(5):20230028. doi: 10.1098/rsfs.2023.0028. eCollection 2023 Oct 6.
The development and bottom-up assembly of synthetic cells with a functional cytoskeleton sets a major milestone to understand cell mechanics and to develop man-made machines on the nano- and microscale. However, natural cytoskeletal components can be difficult to purify, deliberately engineer and reconstitute within synthetic cells which therefore limits the realization of multifaceted functions of modern cytoskeletons in synthetic cells. Here, we review recent progress in the development of synthetic cytoskeletons made from deoxyribonucleic acid (DNA) as a complementary strategy. In particular, we explore the capabilities and limitations of DNA cytoskeletons to mimic functions of natural cystoskeletons like reversible assembly, cargo transport, force generation, mechanical support and guided polymerization. With recent examples, we showcase the power of rationally designed DNA cytoskeletons for bottom-up assembled synthetic cells as fully engineerable entities. Nevertheless, the realization of dynamic instability, self-replication and genetic encoding as well as contractile force generating motors remains a fruitful challenge for the complete integration of multifunctional DNA-based cytoskeletons into synthetic cells.
具有功能性细胞骨架的合成细胞的开发及自下而上组装,是理解细胞力学以及开发纳米和微米级人造机器的一个重要里程碑。然而,天然细胞骨架成分可能难以纯化、特意改造并在合成细胞内重构,因此限制了现代细胞骨架在合成细胞中多方面功能的实现。在此,我们回顾了作为一种补充策略,由脱氧核糖核酸(DNA)制成的合成细胞骨架开发方面的最新进展。特别是,我们探讨了DNA细胞骨架在模拟天然细胞骨架功能(如可逆组装、货物运输、力的产生、机械支撑和引导聚合)方面的能力和局限性。通过最近的实例,我们展示了合理设计的DNA细胞骨架用于自下而上组装合成细胞作为完全可工程化实体的强大功能。尽管如此,实现动态不稳定性、自我复制和遗传编码以及产生收缩力的马达,对于将多功能DNA基细胞骨架完全整合到合成细胞中而言,仍然是一项富有成效的挑战。