Institut de la Vision, Sorbonne Université, INSERM, CNRS, 17 Rue Moreau, F-75012 Paris, France.
Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2301150120. doi: 10.1073/pnas.2301150120. Epub 2023 Aug 14.
Predicting the responses of sensory neurons is a long-standing neuroscience goal. However, while there has been much progress in modeling neural responses to simple and/or artificial stimuli, predicting responses to natural stimuli remains an ongoing challenge. On the one hand, deep neural networks perform very well on certain datasets but can fail when data are limited. On the other hand, Gaussian processes (GPs) perform well on limited data but are poor at predicting responses to high-dimensional stimuli, such as natural images. Here, we show how structured priors, e.g., for local and smooth receptive fields, can be used to scale up GPs to model neural responses to high-dimensional stimuli. With this addition, GPs largely outperform a deep neural network trained to predict retinal responses to natural images, with the largest differences observed when both models are trained on a small dataset. Further, since they allow us to quantify the uncertainty in their predictions, GPs are well suited to closed-loop experiments, where stimuli are chosen actively so as to collect "informative" neural data. We show how GPs can be used to actively select which stimuli to present, so as to i) efficiently learn a model of retinal responses to natural images, using few data, and ii) rapidly distinguish between competing models (e.g., a linear vs. a nonlinear model). In the future, our approach could be applied to other sensory areas, beyond the retina.
预测感觉神经元的反应是神经科学的一个长期目标。然而,虽然在模拟神经对简单和/或人工刺激的反应方面已经取得了很大进展,但预测对自然刺激的反应仍然是一个持续的挑战。一方面,深度神经网络在某些数据集上表现非常好,但在数据有限时可能会失败。另一方面,高斯过程(Gaussian processes,简称 GPs)在有限的数据上表现良好,但在预测高维刺激(如自然图像)的反应方面表现不佳。在这里,我们展示了如何使用结构化先验,例如局部和平滑感受野,来扩展 GPs 以模拟神经对高维刺激的反应。通过这种补充,GPs 在很大程度上优于经过训练以预测视网膜对自然图像反应的深度神经网络,当两个模型都在小数据集上进行训练时,差异最大。此外,由于它们允许我们量化其预测的不确定性,因此 GPs 非常适合闭环实验,在这些实验中,主动选择刺激以收集“有信息”的神经数据。我们展示了如何使用 GPs 主动选择要呈现的刺激,以便:i)使用少量数据有效地学习对自然图像的视网膜反应模型,以及 ii)快速区分竞争模型(例如,线性模型与非线性模型)。在未来,我们的方法可以应用于除视网膜之外的其他感觉区域。