Suppr超能文献

MCSF-Net:用于实时息肉分割的多尺度通道空间融合网络。

MCSF-Net: a multi-scale channel spatial fusion network for real-time polyp segmentation.

机构信息

School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan, 114051, People's Republic of China.

出版信息

Phys Med Biol. 2023 Aug 31;68(17). doi: 10.1088/1361-6560/acf090.

Abstract

Colorectal cancer is a globally prevalent cancer type that necessitates prompt screening. Colonoscopy is the established diagnostic technique for identifying colorectal polyps. However, missed polyp rates remain a concern. Early detection of polyps, while still precancerous, is vital for minimizing cancer-related mortality and economic impact. In the clinical setting, precise segmentation of polyps from colonoscopy images can provide valuable diagnostic and surgical information. Recent advances in computer-aided diagnostic systems, specifically those based on deep learning techniques, have shown promise in improving the detection rates of missed polyps, and thereby assisting gastroenterologists in improving polyp identification. In the present investigation, we introduce MCSF-Net, a real-time automatic segmentation framework that utilizes a multi-scale channel space fusion network. The proposed architecture leverages a multi-scale fusion module in conjunction with spatial and channel attention mechanisms to effectively amalgamate high-dimensional multi-scale features. Additionally, a feature complementation module is employed to extract boundary cues from low-dimensional features, facilitating enhanced representation of low-level features while keeping computational complexity to a minimum. Furthermore, we incorporate shape blocks to facilitate better model supervision for precise identification of boundary features of polyps. Our extensive evaluation of the proposed MCSF-Net on five publicly available benchmark datasets reveals that it outperforms several existing state-of-the-art approaches with respect to different evaluation metrics. The proposed approach runs at an impressive ∼45 FPS, demonstrating notable advantages in terms of scalability and real-time segmentation.

摘要

结直肠癌是一种全球普遍存在的癌症类型,需要及时进行筛查。结肠镜检查是识别结直肠息肉的既定诊断技术。然而,漏诊息肉的比率仍然令人担忧。早期发现息肉,即使是癌前病变,对于降低癌症相关死亡率和经济影响至关重要。在临床环境中,对结肠镜图像中的息肉进行精确分割可以提供有价值的诊断和手术信息。基于深度学习技术的计算机辅助诊断系统的最新进展在提高漏诊息肉的检测率方面显示出了很大的希望,从而帮助胃肠病学家提高息肉的识别能力。在本研究中,我们引入了 MCSF-Net,这是一个实时自动分割框架,利用了多尺度通道空间融合网络。所提出的架构利用了多尺度融合模块以及空间和通道注意力机制,有效地融合了高维多尺度特征。此外,还采用了特征补充模块从低维特征中提取边界线索,从而增强了低水平特征的表示能力,同时将计算复杂度保持在最低水平。此外,我们还引入了形状块,以促进更好的模型监督,从而更精确地识别息肉的边界特征。我们在五个公开的基准数据集上对所提出的 MCSF-Net 进行了广泛的评估,结果表明,它在不同的评估指标上都优于几种现有的最先进的方法。所提出的方法的运行速度高达令人印象深刻的约 45 FPS,在可扩展性和实时分割方面具有显著优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验