Suppr超能文献

结合金字塔视觉变换器和全卷积网络的改进型双聚合息肉分割网络。

Improved dual-aggregation polyp segmentation network combining a pyramid vision transformer with a fully convolutional network.

作者信息

Li Feng, Huang Zetao, Zhou Lu, Chen Yuyang, Tang Shiqing, Ding Pengchao, Peng Haixia, Chu Yimin

机构信息

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China.

出版信息

Biomed Opt Express. 2024 Mar 26;15(4):2590-2621. doi: 10.1364/BOE.510908. eCollection 2024 Apr 1.

Abstract

Automatic and precise polyp segmentation in colonoscopy images is highly valuable for diagnosis at an early stage and surgery of colorectal cancer. Nevertheless, it still posed a major challenge due to variations in the size and intricate morphological characteristics of polyps coupled with the indistinct demarcation between polyps and mucosas. To alleviate these challenges, we proposed an improved dual-aggregation polyp segmentation network, dubbed Dua-PSNet, for automatic and accurate full-size polyp prediction by combining both the transformer branch and a fully convolutional network (FCN) branch in a parallel style. Concretely, in the transformer branch, we adopted the B3 variant of pyramid vision transformer v2 (PVTv2-B3) as an image encoder for capturing multi-scale global features and modeling long-distant interdependencies between them whilst designing an innovative multi-stage feature aggregation decoder (MFAD) to highlight critical local feature details and effectively integrate them into global features. In the decoder, the adaptive feature aggregation (AFA) block was constructed for fusing high-level feature representations of different scales generated by the PVTv2-B3 encoder in a stepwise adaptive manner for refining global semantic information, while the ResidualBlock module was devised to mine detailed boundary cues disguised in low-level features. With the assistance of the selective global-to-local fusion head (SGLFH) module, the resulting boundary details were aggregated selectively with these global semantic features, strengthening these hierarchical features to cope with scale variations of polyps. The FCN branch embedded in the designed ResidualBlock module was used to encourage extraction of highly merged fine features to match the outputs of the Transformer branch into full-size segmentation maps. In this way, both branches were reciprocally influenced and complemented to enhance the discrimination capability of polyp features and enable a more accurate prediction of a full-size segmentation map. Extensive experiments on five challenging polyp segmentation benchmarks demonstrated that the proposed Dua-PSNet owned powerful learning and generalization ability and advanced the state-of-the-art segmentation performance among existing cutting-edge methods. These excellent results showed our Dua-PSNet had great potential to be a promising solution for practical polyp segmentation tasks in which wide variations of data typically occurred.

摘要

在结肠镜检查图像中实现自动且精确的息肉分割对于结直肠癌的早期诊断和手术具有极高的价值。然而,由于息肉大小各异、形态特征复杂,且息肉与黏膜之间界限不清晰,这仍然构成了一项重大挑战。为了缓解这些挑战,我们提出了一种改进的双聚合息肉分割网络,称为Dua-PSNet,通过以并行方式结合Transformer分支和全卷积网络(FCN)分支,实现自动且准确的全尺寸息肉预测。具体而言,在Transformer分支中,我们采用金字塔视觉Transformer v2(PVTv2-B3)的B3变体作为图像编码器,用于捕捉多尺度全局特征并对它们之间的长距离相互依赖关系进行建模,同时设计了一种创新的多阶段特征聚合解码器(MFAD),以突出关键的局部特征细节并有效地将它们整合到全局特征中。在解码器中,构建了自适应特征聚合(AFA)块,以逐步自适应的方式融合由PVTv2-B3编码器生成的不同尺度的高级特征表示,以细化全局语义信息,同时设计了残差块模块(ResidualBlock)来挖掘隐藏在低级特征中的详细边界线索。借助选择性全局到局部融合头(SGLFH)模块,将得到的边界细节与这些全局语义特征进行选择性聚合,强化这些层次特征以应对息肉的尺度变化。嵌入在设计的残差块模块中的FCN分支用于促进提取高度融合的精细特征,以将Transformer分支的输出匹配为全尺寸分割图。通过这种方式,两个分支相互影响和补充,以增强息肉特征的辨别能力,并实现对全尺寸分割图更准确的预测。在五个具有挑战性的息肉分割基准上进行的广泛实验表明,所提出的Dua-PSNet具有强大的学习和泛化能力,并在现有前沿方法中提升了当前的分割性能。这些出色的结果表明,我们的Dua-PSNet在实际息肉分割任务中具有巨大潜力,因为在这些任务中通常会出现数据的广泛变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2154/11019695/fc503deab62e/boe-15-4-2590-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验