Suppr超能文献

通过最大化有效信息在数据中发现涌现现象。

Finding emergence in data by maximizing effective information.

作者信息

Yang Mingzhe, Wang Zhipeng, Liu Kaiwei, Rong Yingqi, Yuan Bing, Zhang Jiang

机构信息

School of Systems Science, Beijing Normal University, Beijing 100875, China.

Department of Cognitive Science, Johns Hopkins University, Baltimore 21218, USA.

出版信息

Natl Sci Rev. 2024 Aug 12;12(1):nwae279. doi: 10.1093/nsr/nwae279. eCollection 2025 Jan.

Abstract

Quantifying emergence and modeling emergent dynamics in a data-driven manner for complex dynamical systems is challenging due to the fact that emergent behaviors cannot be directly captured by micro-level observational data. Thus, it is crucial to develop a framework to identify emergent phenomena and capture emergent dynamics at the macro-level using available data. Inspired by the theory of causal emergence (CE), this paper introduces a machine learning framework to learn macro-dynamics in an emergent latent space and quantify the degree of CE. The framework maximizes effective information, resulting in a macro-dynamics model with enhanced causal effects. Experimental results on simulated and real data demonstrate the effectiveness of the proposed framework. It quantifies degrees of CE effectively under various conditions and reveals distinct influences of different noise types. It can learn a one-dimensional coarse-grained macro-state from functional magnetic resonance imaging data to represent complex neural activities during movie clip viewing. Furthermore, improved generalization to different test environments is observed across all simulation data.

摘要

以数据驱动的方式对复杂动力系统中的涌现进行量化并对涌现动力学进行建模具有挑战性,因为微观层面的观测数据无法直接捕捉涌现行为。因此,开发一个框架以利用可用数据在宏观层面识别涌现现象并捕捉涌现动力学至关重要。受因果涌现(CE)理论的启发,本文引入了一个机器学习框架,用于在涌现潜空间中学习宏观动力学并量化CE程度。该框架使有效信息最大化,从而得到一个具有增强因果效应的宏观动力学模型。在模拟数据和真实数据上的实验结果证明了所提出框架的有效性。它能在各种条件下有效量化CE程度,并揭示不同噪声类型的独特影响。它可以从功能磁共振成像数据中学习一维粗粒度宏观状态,以表征观看电影片段时的复杂神经活动。此外,在所有模拟数据中都观察到对不同测试环境的泛化能力有所提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/314c/11697982/9da92f8181cd/nwae279fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验