Suppr超能文献

系统和观察者的涌现和算法信息动力学。

Emergence and algorithmic information dynamics of systems and observers.

机构信息

National Laboratory for Scientific Computing (LNCC), 25651-075 Petropolis, Rio de Janeiro, Brazil.

Algorithmic Nature Group, LABORES for the Natural and Digital Sciences, 75005 Paris, France.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Jul 11;380(2227):20200429. doi: 10.1098/rsta.2020.0429. Epub 2022 May 23.

Abstract

One of the challenges of defining emergence is that one observer's prior knowledge may cause a phenomenon to present itself as emergent that to another observer appears reducible. By formalizing the act of observing as mutual perturbations between dynamical systems, we demonstrate that the emergence of algorithmic information does depend on the observer's formal knowledge, while being robust vis-a-vis other subjective factors, particularly: the choice of programming language and method of measurement; errors or distortions during the observation; and the informational cost of processing. This is called observer-dependent emergence (ODE). In addition, we demonstrate that the unbounded and rapid increase of emergent algorithmic information implies asymptotically observer-independent emergence (AOIE). Unlike ODE, AOIE is a type of emergence for which emergent phenomena will be considered emergent no matter what formal theory an observer might bring to bear. We demonstrate the existence of an evolutionary model that displays the diachronic variant of AOIE and a network model that displays the holistic variant of AOIE. Our results show that, restricted to the context of finite discrete deterministic dynamical systems, computable systems and irreducible information content measures, AOIE is the strongest form of emergence that formal theories can attain. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.

摘要

定义涌现的一个挑战在于,一个观察者的先验知识可能导致一个现象表现为涌现,而对于另一个观察者来说,这个现象似乎是可以还原的。通过将观察行为形式化为动态系统之间的相互扰动,我们证明了算法信息的涌现确实取决于观察者的形式知识,同时对其他主观因素具有鲁棒性,特别是:编程语言的选择和测量方法;观察过程中的误差或扭曲;以及处理的信息成本。这被称为观察者依赖的涌现(ODE)。此外,我们证明了算法信息的无界和快速增加意味着渐近地观察者独立的涌现(AOIE)。与 ODE 不同,AOIE 是一种涌现,无论观察者可能带来什么样的形式理论,涌现现象都将被认为是涌现的。我们展示了一个进化模型,该模型显示了 AOIE 的历时变体,以及一个网络模型,该模型显示了 AOIE 的整体变体。我们的结果表明,在有限离散确定性动力系统、可计算系统和不可约信息内容度量的背景下,AOIE 是形式理论能够达到的最强形式的涌现。本文是主题为“复杂物理和社会技术系统中的涌现现象:从细胞到社会”的一部分。

相似文献

1
Emergence and algorithmic information dynamics of systems and observers.系统和观察者的涌现和算法信息动力学。
Philos Trans A Math Phys Eng Sci. 2022 Jul 11;380(2227):20200429. doi: 10.1098/rsta.2020.0429. Epub 2022 May 23.
2
Emergence as the conversion of information: a unifying theory.涌现是信息的转化:一种统一理论。
Philos Trans A Math Phys Eng Sci. 2022 Jul 11;380(2227):20210150. doi: 10.1098/rsta.2021.0150. Epub 2022 May 23.
3
From the origin of life to pandemics: emergent phenomena in complex systems.从生命起源到大流行:复杂系统中的突发现象。
Philos Trans A Math Phys Eng Sci. 2022 Jul 11;380(2227):20200410. doi: 10.1098/rsta.2020.0410. Epub 2022 May 23.
4
Greater than the parts: a review of the information decomposition approach to causal emergence.超越局部:信息分解方法对因果涌现的综述。
Philos Trans A Math Phys Eng Sci. 2022 Jul 11;380(2227):20210246. doi: 10.1098/rsta.2021.0246. Epub 2022 May 23.
8
Emergent entanglement structures and self-similarity in quantum spin chains.量子自旋链中的突发纠缠结构与自相似性
Philos Trans A Math Phys Eng Sci. 2022 Jul 11;380(2227):20200421. doi: 10.1098/rsta.2020.0421. Epub 2022 May 23.
9
Emergence of functional information from multivariate correlations.从多元相关中涌现的功能信息。
Philos Trans A Math Phys Eng Sci. 2022 Jul 11;380(2227):20210250. doi: 10.1098/rsta.2021.0250. Epub 2022 May 23.

本文引用的文献

8
Low-algorithmic-complexity entropy-deceiving graphs.低算法复杂度的熵欺骗图
Phys Rev E. 2017 Jul;96(1-1):012308. doi: 10.1103/PhysRevE.96.012308. Epub 2017 Jul 7.
10
The algorithmic origins of life.生命的算法起源。
J R Soc Interface. 2012 Dec 12;10(79):20120869. doi: 10.1098/rsif.2012.0869. Print 2013 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验