Suppr超能文献

多尺度协调动力学的拓扑肖像。

Topological portraits of multiscale coordination dynamics.

机构信息

Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.

Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, USA.

出版信息

J Neurosci Methods. 2020 Jun 1;339:108672. doi: 10.1016/j.jneumeth.2020.108672. Epub 2020 Mar 6.

Abstract

Living systems exhibit complex yet organized behavior on multiple spatiotemporal scales. To investigate the nature of multiscale coordination in living systems, one needs a meaningful and systematic way to quantify the complex dynamics, a challenge in both theoretical and empirical realms. The present work shows how integrating approaches from computational algebraic topology and dynamical systems may help us meet this challenge. In particular, we focus on the application of multiscale topological analysis to coordinated rhythmic processes. First, theoretical arguments are introduced as to why certain topological features and their scale-dependency are highly relevant to understanding complex collective dynamics. Second, we propose a method to capture such dynamically relevant topological information using persistent homology, which allows us to effectively construct a multiscale topological portrait of rhythmic coordination. Finally, the method is put to test in detecting transitions in real data from an experiment of rhythmic coordination in ensembles of interacting humans. The recurrence plots of topological portraits highlight collective transitions in coordination patterns that were elusive to more traditional methods. This sensitivity to collective transitions would be lost if the behavioral dynamics of individuals were treated as separate degrees of freedom instead of constituents of the topology that they collectively forge. Such multiscale topological portraits highlight collective aspects of coordination patterns that are irreducible to properties of individual parts. The present work demonstrates how the analysis of multiscale coordination dynamics can benefit from topological methods, thereby paving the way for further systematic quantification of complex, high-dimensional dynamics in living systems.

摘要

生命系统在多个时空尺度上表现出复杂而有序的行为。为了研究生命系统中多尺度协调的本质,我们需要有一种有意义且系统的方法来量化复杂的动力学,这在理论和经验领域都是一个挑战。本工作展示了如何整合计算代数拓扑和动力系统方法来帮助我们应对这一挑战。具体来说,我们专注于将多尺度拓扑分析应用于协调的节奏过程。首先,引入了理论论证,说明为什么某些拓扑特征及其尺度依赖性与理解复杂的集体动力学高度相关。其次,我们提出了一种使用持久同调捕捉这种动态相关拓扑信息的方法,该方法使我们能够有效地构建节奏协调的多尺度拓扑图像。最后,该方法被用于检测来自人类相互作用群体中节奏协调实验的真实数据中的转变。拓扑图像的递归图突出显示了协调模式中的集体转变,这些转变是传统方法难以发现的。如果将个体的行为动力学视为独立的自由度,而不是它们共同形成的拓扑的组成部分,那么这种对集体转变的敏感性就会丧失。这种多尺度拓扑图像突出了协调模式的集体方面,这些方面无法简化为个体部分的属性。本工作展示了多尺度协调动力学的分析如何受益于拓扑方法,从而为进一步系统地量化生命系统中的复杂、高维动力学铺平了道路。

相似文献

1
Topological portraits of multiscale coordination dynamics.多尺度协调动力学的拓扑肖像。
J Neurosci Methods. 2020 Jun 1;339:108672. doi: 10.1016/j.jneumeth.2020.108672. Epub 2020 Mar 6.
2
Mapping from structure to dynamics: a unified view of dynamical processes on networks.从结构到动力学的映射:网络上动力学过程的统一观点。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 2):026116. doi: 10.1103/PhysRevE.82.026116. Epub 2010 Aug 27.
6
Coordination Dynamics: A Foundation for Understanding Social Behavior.协调动力学:理解社会行为的基础。
Front Hum Neurosci. 2020 Aug 14;14:317. doi: 10.3389/fnhum.2020.00317. eCollection 2020.

引用本文的文献

1
Pathfinding: a neurodynamical account of intuition.寻路:直觉的神经动力学阐释
Commun Biol. 2025 Aug 13;8(1):1214. doi: 10.1038/s42003-025-08612-9.
5
Integration and Causality in Enactive Approaches to Psychiatry.精神病学的生成进路中的整合与因果关系
Front Psychiatry. 2022 Jul 4;13:870122. doi: 10.3389/fpsyt.2022.870122. eCollection 2022.
9
Coordination Dynamics: A Foundation for Understanding Social Behavior.协调动力学:理解社会行为的基础。
Front Hum Neurosci. 2020 Aug 14;14:317. doi: 10.3389/fnhum.2020.00317. eCollection 2020.

本文引用的文献

3
Critical diversity: Divided or united states of social coordination.关键多样性:社会协调的分裂或统一国家。
PLoS One. 2018 Apr 4;13(4):e0193843. doi: 10.1371/journal.pone.0193843. eCollection 2018.
5
Fundamental structures of dynamic social networks.动态社会网络的基本结构。
Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):9977-82. doi: 10.1073/pnas.1602803113. Epub 2016 Aug 23.
7
Clique topology reveals intrinsic geometric structure in neural correlations.团拓扑揭示了神经相关性中的内在几何结构。
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13455-60. doi: 10.1073/pnas.1506407112. Epub 2015 Oct 20.
8
Homological scaffolds of brain functional networks.脑功能网络的同源支架
J R Soc Interface. 2014 Dec 6;11(101):20140873. doi: 10.1098/rsif.2014.0873.
9
Enlarging the scope: grasping brain complexity.拓展视野:把握大脑复杂性。
Front Syst Neurosci. 2014 Jun 25;8:122. doi: 10.3389/fnsys.2014.00122. eCollection 2014.
10
The metastable brain.亚稳态大脑。
Neuron. 2014 Jan 8;81(1):35-48. doi: 10.1016/j.neuron.2013.12.022.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验