Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
Anal Chem. 2023 Aug 29;95(34):12640-12647. doi: 10.1021/acs.analchem.3c00348. Epub 2023 Aug 15.
-glycan alterations contribute to the progression of several joint diseases, including knee osteoarthritis (KOA). However, molecular changes in KOA subchondral trabecular bone, when exposed to different joint loading forces, are still unknown. The aim of this study was, therefore, to demonstrate the feasibility to differentiate -glycan changes in subchondral trabecular bone from four different joint loading forces of the tibial plateau regions (i.e., Lateral Anterior (L-A), Lateral Posterior (L-P), Medial Anterior (M-A), and Medial Posterior (M-P)) in KOA patients ( = 10) using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) at 20 μm spatial resolution. The degree of cartilage degeneration was evaluated histologically, and the subchondral bone tissue microarrays (TMAs) were subsequently manually constructed from formalin-fixed paraffin-embedded (FFPE) KOA osteochondral (i.e., cartilage-subchondral bone) tissues. Overall, the Osteoarthritis Research Society International (OARSI) histological grade was significantly higher and the size of chondrocytes in the superficial zone was much larger for both M-A and M-P compared to L-A and L-P of cartilage ( = 0.006, = 0.030, = 0.028, and = 0.010; respectively). Among the 65 putative -glycans observed by MALDI-MSI, 2 core fucosylated bi-antennary -glycans, 1809.64; (Hex)(HexNAc)(Fuc) and 2100.73; (NeuAc)(Hex)(HexNAc)(Fuc), were significantly higher in intensity in M-A compared to L-A of the trabecular bone ( = 0.027, and = 0.038, respectively). These -glycans were then further structurally characterized by in situ MS/MS fragmentation post-MALDI-MSI. Our results demonstrate, for the first time, -glycan alterations can occur at different joint loading forces in the KOA tibial plateau and the feasibility of subchondral bone TMA construction for -glycan MALDI-MSI.
聚糖改变导致几种关节疾病的进展,包括膝骨关节炎(KOA)。然而,当暴露于不同的关节加载力时,KOA 软骨下骨小梁中的分子变化仍然未知。因此,本研究旨在证明使用基质辅助激光解吸/电离质谱成像(MALDI-MSI)以 20 μm 空间分辨率从 KOA 患者的胫骨平台区域的四种不同关节加载力(即外侧前(L-A)、外侧后(L-P)、内侧前(M-A)和内侧后(M-P))中区分软骨下骨小梁中的聚糖变化的可行性( = 10)。通过组织学评估软骨退变程度,并随后从福尔马林固定石蜡包埋(FFPE)的 KOA 骨软骨(即软骨-软骨下骨)组织手动构建软骨下骨组织微阵列(TMA)。总体而言,与 L-A 和 L-P 相比,M-A 和 M-P 的软骨中 OARSI 组织学等级明显更高,并且浅层区的软骨细胞大小也更大( = 0.006, = 0.030, = 0.028 和 = 0.010;分别)。在 MALDI-MSI 观察到的 65 种假定的聚糖中,两种核心岩藻糖基化双天线聚糖,1809.64;(Hex)(HexNAc)(Fuc)和 2100.73;(NeuAc)(Hex)(HexNAc)(Fuc)在 M-A 中的强度明显高于 L-A( = 0.027 和 = 0.038,分别)。然后,通过 MALDI-MSI 后原位 MS/MS 碎片化进一步对这些聚糖进行结构表征。我们的结果首次表明,在 KOA 胫骨平台的不同关节加载力下,聚糖改变可能发生,并且软骨下骨 TMA 构建对于 MALDI-MSI 中的聚糖是可行的。