Suppr超能文献

将隐私演算扩展到移动健康领域:德国使用移动健康应用意愿的调查研究

Extending the Privacy Calculus to the mHealth Domain: Survey Study on the Intention to Use mHealth Apps in Germany.

作者信息

von Kalckreuth Niklas, Feufel Markus A

机构信息

Division of Ergonomics, Department of Psychology and Ergonomics (IPA), Technische Universität Berlin, Berlin, Germany.

出版信息

JMIR Hum Factors. 2023 Aug 16;10:e45503. doi: 10.2196/45503.

Abstract

BACKGROUND

With the increasing digitalization of the health sector, more and more mobile health (mHealth) apps are coming to the market to continuously collect and process sensitive health data for the benefit of patients and providers. These technologies open up new opportunities to make the health care system more efficient and save costs but also pose potential threats such as loss of data or finances.

OBJECTIVE

This study aims to present an empirical review and adaptation of the extended privacy calculus model to the mHealth domain and to understand what factors influence the intended usage of mHealth technologies.

METHODS

A survey study was conducted to empirically validate our model, using a case vignette as cover story. Data were collected from 250 German participants and analyzed using a covariance-based structural equation model.

RESULTS

The model explains R2=79.3% of the variance in intention to use. The 3 main factors (social norms, attitude to privacy, and perceived control over personal data) influenced the intention to use mHealth apps, albeit partially indirectly. The intention to use mHealth apps is driven by the perceived benefits of the technology, trust in the provider, and social norms. Privacy concerns have no bearing on the intention to use. The attitude to privacy has a large inhibiting effect on perceived benefits, as well as on trust in the provider. Perceived control over personal data clearly dispels privacy concerns and supports the relationship of trust between the user and the provider.

CONCLUSIONS

Based on the privacy calculus, our domain-specific model explains the intention to use mHealth apps better than previous, more general models. The findings allow health care providers to improve their products and to increase usage by targeting specific user groups.

摘要

背景

随着医疗保健领域数字化程度的不断提高,越来越多的移动健康(mHealth)应用程序进入市场,持续收集和处理敏感的健康数据,以造福患者和医疗服务提供者。这些技术为提高医疗保健系统的效率和节省成本带来了新机遇,但也带来了诸如数据丢失或财务损失等潜在威胁。

目的

本研究旨在对扩展隐私计算模型进行实证性回顾,并将其应用于移动健康领域,以了解哪些因素会影响移动健康技术的预期使用情况。

方法

进行了一项调查研究,以实证验证我们的模型,采用案例 vignette 作为掩护故事。从 250 名德国参与者那里收集数据,并使用基于协方差的结构方程模型进行分析。

结果

该模型解释了使用意愿方差的 R2 = 79.3%。三个主要因素(社会规范、隐私态度和对个人数据的感知控制)影响了使用移动健康应用程序的意愿,尽管部分是间接影响。使用移动健康应用程序的意愿受到该技术的感知益处、对提供者的信任以及社会规范的驱动。隐私担忧与使用意愿无关。隐私态度对感知益处以及对提供者的信任有很大的抑制作用。对个人数据的感知控制明显消除了隐私担忧,并支持了用户与提供者之间的信任关系。

结论

基于隐私计算,我们的特定领域模型比以往更通用的模型能更好地解释使用移动健康应用程序的意愿。这些发现使医疗服务提供者能够改进其产品,并通过针对特定用户群体来提高使用率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8612/10468710/bf6bfa4454d6/humanfactors_v10i1e45503_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验