Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA.
Curr Biol. 2023 Sep 25;33(18):3805-3820.e7. doi: 10.1016/j.cub.2023.07.031. Epub 2023 Aug 15.
Balancing the competing demands of phagolysosomal degradation and autophagy is a significant challenge for phagocytic tissues. Yet how this plasticity is accomplished in health and disease is poorly understood. In the retina, circadian phagocytosis and degradation of photoreceptor outer segments by the postmitotic retinal pigment epithelium (RPE) are essential for healthy vision. Disrupted autophagy due to mechanistic target of rapamycin (mTOR) overactivation in the RPE is associated with blinding macular degenerations; however, outer segment degradation is unaffected in these diseases, indicating that distinct mechanisms regulate these clearance mechanisms. Here, using advanced imaging and mouse models, we identify optineurin as a key regulator that tunes phagocytosis and lysosomal capacity to meet circadian demands and helps prioritize outer segment clearance by the RPE in macular degenerations. High-resolution live-cell imaging implicates optineurin in scissioning outer segment tips prior to engulfment, analogous to microglial trogocytosis of neuronal processes. Optineurin is essential for recruiting light chain 3 (LC3), which anchors outer segment phagosomes to microtubules and facilitates phagosome maturation and fusion with lysosomes. This dynamically activates transcription factor EB (TFEB) to induce lysosome biogenesis in an mTOR-independent, transient receptor potential-mucolipin 1 (TRPML1)-dependent manner. RNA-seq analyses show that expression of TFEB target genes temporally tracks with optineurin recruitment and that lysosomal and autophagy genes are controlled by distinct transcriptional programs in the RPE. The unconventional plasma membrane-to-nucleus signaling mediated by optineurin ensures outer segment degradation under conditions of impaired autophagy in macular degeneration models. Independent regulation of these critical clearance mechanisms would help safeguard the metabolic fitness of the RPE throughout the organismal lifespan.
平衡吞噬体降解和自噬的竞争需求是吞噬组织面临的重大挑战。然而,在健康和疾病状态下,这种可塑性是如何实现的还知之甚少。在视网膜中,光感受器外节的昼夜性吞噬和降解是由有丝分裂后视网膜色素上皮(RPE)完成的,这对于健康的视力至关重要。由于机械性靶标雷帕霉素(mTOR)在 RPE 中的过度激活导致自噬受阻,与致盲性黄斑变性有关;然而,在这些疾病中外节降解不受影响,表明不同的机制调节这些清除机制。在这里,我们使用先进的成像和小鼠模型,确定 optineurin 是一种关键调节因子,它可以调节吞噬作用和溶酶体的容量,以满足昼夜需求,并有助于优先清除 RPE 中的外节。高分辨率活细胞成像表明 optineurin 在吞噬作用之前参与了外节尖端的分裂,类似于小胶质细胞吞噬神经元突起。optineurin 对于招募 LC3 是必需的,LC3 将外节吞噬体锚定在微管上,并促进吞噬体成熟和与溶酶体融合。这动态地激活转录因子 EB(TFEB),以诱导溶酶体生物发生,而无需 mTOR,而是通过瞬时受体电位-粘蛋白 1(TRPML1)依赖的方式。RNA-seq 分析表明,TFEB 靶基因的表达与 optineurin 的募集具有时间相关性,并且溶酶体和自噬基因受 RPE 中不同转录程序的控制。optineurin 介导的非常规质膜到核信号传递确保了在黄斑变性模型中自噬受损的情况下外节的降解。这些关键清除机制的独立调节将有助于在整个机体寿命内维持 RPE 的代谢健康。