Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St. BAR-8, Boston, MA, 02114, USA.
Harvard-MIT Health Sciences and Technology, Cambridge, MA, 02139, USA.
Nat Commun. 2023 Aug 16;14(1):4949. doi: 10.1038/s41467-023-40625-y.
Visualizing viscoelastic waves in materials and tissues through noninvasive imaging is valuable for analyzing their mechanical properties and detecting internal anomalies. However, traditional elastography techniques have been limited by a maximum wave frequency below 1-10 kHz, which hampers temporal and spatial resolution. Here, we introduce an optical coherence elastography technique that overcomes the limitation by extending the frequency range to MHz. Our system can measure the stiffness of hard materials including bones and extract viscoelastic shear moduli for polymers and hydrogels in conventionally inaccessible ranges between 100 Hz and 1 MHz. The dispersion of Rayleigh surface waves across the ultrawide band allowed us to profile depth-dependent shear modulus in cartilages ex vivo and human skin in vivo with sub-mm anatomical resolution. This technique holds immense potential as a noninvasive measurement tool for material sciences, tissue engineering, and medical diagnostics.
通过非侵入性成像来可视化材料和组织中的粘弹性波,对于分析它们的机械性能和检测内部异常非常有价值。然而,传统的弹性成像技术受到最大波频率低于 1-10 kHz 的限制,这限制了其时间和空间分辨率。在这里,我们引入了一种光学相干弹性成像技术,通过将频率范围扩展到 MHz 来克服这一限制。我们的系统可以测量包括骨骼在内的硬材料的刚度,并在传统上无法到达的 100 Hz 至 1 MHz 范围内提取聚合物和水凝胶的粘弹性剪切模量。在超宽带范围内的瑞利表面波的色散使我们能够以亚毫米级的解剖分辨率对离体软骨和体内人体皮肤的深度相关剪切模量进行成像。这项技术作为一种用于材料科学、组织工程和医学诊断的非侵入性测量工具具有巨大的潜力。